Program Structure for Second Year Engineering Semester III & IV UNIVERSITY OF MUMBAI

(With Effect from 2020-2021)

Semester IV

Course Code	t ourse Name		Teaching Scheme (Contact Hours)			Credits Assigned				
Couc		Theory Pract. Tut.		Γut.	Theory	Pract.	Tut.	Total		
ITC401	Engineering Mathematics-IV	3			1	3		1	4	
ITC402	Computer Network and Network Design	3				3	^		3	
ITC403	Operating System	3				3		1	3	
ITC404	Automata Theory	3				3	7	1	3	
ITC405	Computer Organization and Architecture	3				3			3	
ITL401	Network Lab		2				1		1	
ITL402	Unix Lab		2		(1		1	
ITL403	Microprocessor Lab	1	2				Λ		1	
ITL404	Python Lab (SBL)		4				2		2	
ITM401	Mini Project – 1 B for Python based automation projects	4 ^{\$})		2		2		
Total		15	14		1	15	7	1	23	
				Theo	ry	nination Sc	Term Work	Pract/ oral	Total	
Course Code	Course Name	Intern	al Assess	sment	End Sem Exan	. Durati	on			
		Test 1	Test 2	Avg.						
ITC401	Engineering Mathematics-IV	20	20	20	80	3	25		125	
ITC402	Computer Network and Network Design	20	20	20	80	3			100	
ITC403	Operating System	20	20	20	80	3			100	
ITC404	Automata Theory	20	20	20	80	3			100	
ITC405	Computer Organization and Architecture	20 20 20 8		80	3	3		100		
ITL401	Network Lab					25	25	50		
ITL402	Unix Lab						25	25	50	
ITL403	Microprocessor Lab						25	25	50	
ITL404	Python Lab (SBL)					25	25	50		
ITM401	Mini Project – 1 B for Python based automation projects	•					25	25	50	
	Total			100	400		150	75	775	

\$ indicates work load of Learner (Not Faculty), for Mini Project

Course	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
Code		Theory	Prac t.	Tut.	Theory	TW/Pract	Tut.	Total
ITC401	Engineering Mathematics-IV	03	-	01	03	-	01	04

		Examination Scheme							
		Theory Internal Assessment							1
Course Code	Course Name	Test1	Test2	Avg of Test 1 & 2	End Sem Exam	Term Work	Pract	Oral	Total
ITC401	Engineering Mathematics-IV	20	20	20	80	25	-		125

Pre-requisite: Engineering Mathematics-I, Engineering Mathematics-II, Engineering Mathematics-III, Binomial Distribution.

Course Objectives:

Sr. No.	Course Objectives
The cours	se aims:
1	Matrix algebra to understand engineering problems
2	Line and Contour integrals and expansion of a complex valued function in a power
	series.
3	Z-Transforms and Inverse Z-Transforms with its properties.
4	The concepts of probability distributions and sampling theory for small samples.
5	Linear and Non-linear programming problems of optimization.

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy					
On suc	cessful completion, of course, learner/student will be able to:						
1	Apply the concepts of eigenvalues and eigenvectors in engineering problems.	L1, L2, L3					
2	Use the concepts of Complex Integration for evaluating integrals, computing L3						
	residues & evaluate various contour integrals.						
3	Apply the concept of Z- transformation and inverse in engineering problems.	L1,L2,L3					
4	Use the concept of probability distribution and sampling theory to	L3					
	engineering problems.						
5	Apply the concept of Linear Programming Problems to optimization.	L1, L2, L3					
6	Solve Non-Linear Programming Problems for optimization of engineering	L3					
	problems.						

1.3 Similarity of matrices, diagonalizable and non-diagonalizable matrices Self-learning Topics: Derogatory and non-derogatory matrices, Functions of Square Matrix, Linear Transformations, Quadratic forms. Module: Complex Integration 2.1 Line Integral, Cauchy's Integral theorem for simple connected and multiply connected regions (without proof), Cauchy's Integral formula (without proof). 2.2 Taylor's and Laurent's series (without proof). 2.3 Definition of Singularity, Zeroes, poles of f(z), Residues, Cauchy's Residue Theorem (without proof) Self-learning Topics: Application of Residue Theorem to evaluate real integrations. Module: Z Transform 3.1 Definition and Region of Convergence, Transform of Standard Functions: {k ⁿ a ^k }, {a ^k }, {k ^k }, {k ^{k+n} _k C. a ^k }, {c ^k sin(αk + β)}, {c ^k sinh αk}, {c ^k cosh αk}. 3.2 Properties of Z Transform: Change of Scale, Shifting Property, Multiplication, and Division by the Convolution theorem. 3.3 Inverse Z transform: Partial Fraction Method, Convolution Method. Self-learning Topics: Initial value theorem, Final value theorem, Inverse of Z Transform by Bitomial Expansion Module: Probability Distribution and Sampling Theory 4.1 Probability Distribution: Poisson and Normal distribution 4.2 Sampling distribution, Test of Hypothesis, Level of Significance, Critical region, One-tailed, and two-tailed test, Degree of freedom. 4.3 Students' t-distribution (Small sample). Test the significance of mean and Difference between the means of two samples. Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table. Self-learning Topics: Test significance for Large samples, Estimate parameters of a population, Yate's Correction. Module: Linear Programming Problems	Module	Detailed Contents	Hours	CO Mapping
(without proof) 1.2 Cayley-Hamilton Theorem (without proof), verification and reduction of higher degree polynomials 1.3 Similarity of matrices, diagonalizable and non-diagonalizable matrices Self-learning Topics: Derogatory and non-derogatory matrices, Functions of Square Matrix, Linear Transformations, Quadratic forms. Module: Complex Integral theorem for simple connected and multiply connected regions (without proof), Cauchy's Integral formula (without proof). 2.2 Taylor's and Laurent's series (without proof), Cauchy's Integral formula (without proof). 2.3 Definition of Singularity, Zeroes, poles of f(z), Residues, Cauchy's Residue Theorem (without proof) Self-learning Topics: Application of Residue Theorem to evaluate real integrations. Module: Z Transform 3.1 Definition and Region of Convergence, Transform of Standard Functions: {k^na^k}, {a^k}, {c^k sin(ak + β)}, {c^k sin(ak + β)}, {c^k sin(ak)}, {c^k cosh ak}. 3.2 Properties of Z Transform: Change of Scale, Shifting Property, Multiplication, and Division by S. Convolution theorem. 3.3 Inverse Z transform: Partial Fraction Method, Convolution Method. Self-learning Topics: Initial value theorem, Final value theorem, Inverse of Z Transform by Binomial Expansion Module: Probability Distribution and Sampling Theory 4.1 Frobability Distribution: Poisson and Normal distribution 4.2 Sampling distribution: Poisson and Normal distribution 4.3 Students' t-distribution (Small sample). Test the significance of mean and Difference between the means of two samples. Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table. Self-learning Topics: Test significance for Large samples, Estimate parameters of a population, Yate's Correction. Module: Linear Programming Problems				1 - 0
1.2 Cayley-Hamilton Theorem (without proof), verification and reduction of higher degree polynomials 1.3 Similarity of matrices, diagonalizable and non-diagonalizable matrices Self-learning Topics: Derogatory and non-derogatory matrices, Functions of Square Matrix, Linear Transformations, Quadratic forms. Module: Complex Integration 2.1 Line Integral, Cauchy's Integral theorem for simple connected and multiply connected regions (without proof), Cauchy's Integral formula (without proof). 2.2 Taylor's and Laurent's series (without proof). 2.3 Definition of Singularity, Zeroes, poles of f(z), Residues, Cauchy's Residue Theorem (without proof) Self-learning Topics: Application of Residue Theorem to evaluate real integrations. Module: Z Transform 3.1 Definition and Region of Convergence, Transform of Standard Functions: {kn*ak}, {a^{lk!}}, {k^{+}n*C, a^{k}}, {c^{k}sin(ak + β)}, {c^{k}sinh ak}, {c^{k}cosh ak}. 3.2 Properties of Z Transform: Change of Scale, Shifting Property, Multiplication, and Division by & Conyolution theorem. 3.3 Inverse Z transform: Partial Fraction Method, Convolution Method. Self-learning Topics Intial value theorem, Final value theorem, Inverse of Z Transform by Binomial Expansion Module: Probability Distribution and Sampling Theory 4.1 Probability Distribution. Poisson and Normal distribution 4.2 Sampling distribution, Test of Hypothesis, Level of Significance, Critical region, One-tailed, and two-tailed test, Degree of freedom. 4.3 Students' t-distribution (Small sample). Test the significance of mean and Difference between the means of two samples. Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table. Self-learning Topics: Test significance for Large samples, Estimate parameters of a population, Yate's Correction. Module: Linear Programming Problems				
of higher degree polynomials 1.3 Similarity of matrices, diagonalizable and non-diagonalizable matrices Self-learning Topics: Derogatory and non-derogatory matrices, Functions of Square Matrix, Linear Transformations, Quadratic forms. Module: Complex Integration 2.1 Line Integral, Cauchy's Integral theorem for simple connected and multiply connected regions (without proof), Cauchy's Integral formula (without proof). 2.2 Taylor's and Laurent's series (without proof). 2.3 Definition of Singularity, Zeroes, poles of f(z), Residues, Cauchy's Residue Theorem (without proof) Self-learning Topics: Application of Residue Theorem to evaluate real integrations. Module: Z Transform 3.1 Definition and Region of Convergence, Transform of Standard Functions: {k*n*a*}, {a*k}, {c*sin(ak + β)}, {c*sin(ak + β)}, {c*cosh ak}. 3.2 Properties of Z Transform: Change of Scale, Shifting Property, Multiplication, and Division by e Convolution theorem. 3.3 Inverse Z transform: Partial Fraction Method, Convolution Method. Self-learning Topics: Initial value theorem, Final value theorem, Inverse of Z Transform by Binomial Expansion Module: Probability Distribution and Sampling Theory 4.4 Probability Distribution and Normal distribution 4.2 Sampling distribution, Test of Hypothesis, Level of Significance, Critical region, One-tailed, and two-tailed test, Degree of freedom. 4.3 Students' t-distribution (Small sample). Test the significance of mean and Difference between the means of two samples, Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table. Self-learning Topics: Test significance for Large samples, Estimate parameters of a population, Yate's Correction. Module: Linear Programming Problems	0.1			
higher degree polynomials 1.3 Similarity of matrices, diagonalizable and non-diagonalizable matrices Self-learning Topics: Derogatory and non-derogatory matrices, Functions of Square Matrix, Linear Transformations, Quadratic forms. Module: Complex Integration 2.1 Line Integral, Cauchy's Integral theorem for simple connected and multiply connected regions (without proof), Cauchy's Integral formula (without proof). 2.2 Taylor's and Laurent's series (without proof), Cauchy's Integral formula (without proof). 2.2 Taylor's and Laurent's series (without proof). 3.1 Definition of Singularity, Zeroes, poles of f(z), Residues, Cauchy's Residue Theorem (without proof) Self-learning Topics: Application of Residue Theorem to evaluate real integrations. Module: Z Transform 3.1 Definition and Region of Convergence, Transform of Standard Functions: {k^nak}, {a^k}, {x^k},		1.2 Cayley-Hamilton Theorem (without proof), verification and reduction		
Self-learning Topics: Derogatory and non-derogatory matrices. Functions of Square Matrix, Linear Transformations, Quadratic forms. Module: Complex Integration 2.1 Line Integral, Cauchy's Integral theorem for simple connected and multiply connected regions (without proof), Cauchy's Integral formula (without proof). 2.2 Taylor's and Laurent's series (without proof). 2.3 Definition of Singularity, Zeroes, poles of f(z), Residues, Cauchy's Residue Theorem (without proof) Self-learning Topics: Application of Residue Theorem to evaluate real integrations. Module: Z Transform 3.1 Definition and Region of Convergence, Transform of Standard Functions: {k*n*a*k*, {a*k*, {a*k*	01		6	
Self-learning Topics: Derogatory and non-derogatory matrices, Functions of Square Matrix, Linear Transformations, Quadratic forms. Module: Complex Integration 2.1 Line Integral, Cauchy's Integral theorem for simple connected and multiply connected regions (without proof), Cauchy's Integral formula (without proof). 2.2 Taylor's and Laurent's series (without proof). 2.3 Definition of Singularity, Zeroes, poles of f(z), Residues, Cauchy's Residue Theorem (without proof) Self-learning Topics: Application of Residue Theorem to evaluate real integrations. Module: Z Transform 3.1 Definition and Region of Convergence, Transform of Standard Functions: {k ⁿ a ^k }, {a ^k }, {k ^{k+} _n c.a ^k }, {c ^k sin(ak + β)}, {c ^k sinh ak}, {c ^k cosh ak}. 3.2 Properties of Z Transform: Change of Scale, Shifting Property, Multiplication, and Division by the Convolution theorem. 3.3 Inverse Z transform: Partial Fraction Method, Convolution Method. Self-learning Topics: Initial value theorem, Final value theorem, Inverse of Z Transform by Binomial Expansion Module: Probability Distribution: Poisson and Normal distribution 4.2 Sampling distribution, Test of Hypothesis, Level of Significance, Critical region, One-tailed, and two-tailed test, Degree of freedom. 4.3 Students' t-distribution (Small sample). Test the significance of mean and Difference between the means of two samples. Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table. Self-learning Topics: Test significance for Large samples, Estimate parameters of a population, Yate's Correction. Module: Linear Programming Problems	V2	higher degree polynomials		CO1
Square Matrix, Linear Transformations, Quadratic forms.		1.3 Similarity of matrices, diagonalizable and non-diagonalizable matrices		
2.1 Line Integral, Cauchy's Integral theorem for simple connected and multiply connected regions (without proof), Cauchy's Integral formula (without proof). 2.2 Taylor's and Laurent's series (without proof). 2.3 Definition of Singularity, Zeroes, poles of f(z), Residues, Cauchy's Residue Theorem (without proof) Self-learning Topics: Application of Residue Theorem to evaluate real integrations. Module: Z Transform 3.1 Definition and Region of Convergence, Transform of Standard Functions: {k^na^k}, {a^{[k]}}, {k^{+n}c, a^k}, {c^k \sin(ak + β)}, {c^k \sin ak}, {c^k \cos ak}. 3.2 Properties of Z Transform: Change of Scale, Shifting Property, Multiplication, and Division by Convolution theorem. 3.3 Inverse Z transform: Partial Fraction Method, Convolution Method. Self-learning Topics: Initial value theorem, Final value theorem, Inverse of Z Transform by Binomial Expansion Module: Probability Distribution and Sampling Theory 4.1 Probability Distribution: Poisson and Normal distribution 4.2 Sampling distribution, Test of Hypothesis, Level of Significance, Critical region, One-tailed, and two-tailed test, Degree of freedom. 4.3 Students' t-distribution (Small sample). Test the significance of mean and Difference between the means of two samples. Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table. Self-learning Topics: Test significance for Large samples, Estimate parameters of a population, Yate's Correction. Module: Linear Programming Problems		Square Matrix, Linear Transformations, Quadratic forms.	4	
multiply connected regions (without proof), Cauchy's Integral formula (without proof). 2.2 Taylor's and Laurent's series (without proof). 2.3 Definition of Singularity, Zeroes, poles of f(z), Residues, Cauchy's Residue Theorem (without proof) Self-learning Topics: Application of Residue Theorem to evaluate real integrations. Module: Z Transform 3.1 Definition and Region of Convergence, Transform of Standard Functions: {k^n a^k}, {a^{ k }}, {^{k+n}C. a^k}, {c^k sin(ak + β)}, {c^k sinh ak}, {c^k cosh ak}. 3.2 Properties of Z Transform: Change of Scale, Shifting Property, Multiplication, and Division by k. Convolution theorem. 3.3 Inverse Z transform: Partial Fraction Method, Convolution Method. Self-learning Topics: Initial value theorem, Final value theorem, Inverse of Z Transform by Binomial Expansion Module: Probability Distribution and Sampling Theory 4.1 Probability Distribution: Poisson and Normal distribution 4.2 Sampling distribution, Test of Hypothesis, Level of Significance, Critical region, One-tailed, and two-tailed test, Degree of freedom. 4.3 Students' t-distribution (Small sample). Test the significance of mean and Difference between the means of two samples. Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table. Self-learning Topics: Test significance for Large samples, Estimate parameters of a population, Yate's Correction. Module: Linear Programming Problems		•	_ \	
Residue Theorem (without proof) Self-learning Topics: Application of Residue Theorem to evaluate real integrations. Module: Z Transform 3.1 Definition and Region of Convergence, Transform of Standard Functions: {k^na^k}, {a^{[k]}}, {k^+n^*C. a^k}, {c^k sin(ak + β)}, {c^k sinh ak}, {c^k cosh ak}. 3.2 Properties of Z Transform: Change of Scale, Shifting Property, Multiplication, and Division by k. Convolution theorem. 3.3 Inverse Z transform: Partial Fraction Method, Convolution Method. Self-learning Topics: Initial value theorem, Final value theorem, Inverse of Z Transform by Binomial Expansion Module: Probability Distribution and Sampling Theory 4.1 Probability Distribution: Poisson and Normal distribution 4.2 Sampling distribution, Test of Hypothesis, Level of Significance, Critical region, One-tailed, and two-tailed test, Degree of freedom. 4.3 Students' t-distribution (Small sample). Test the significance of mean and Difference between the means of two samples. Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table. Self-learning Topics: Test significance for Large samples, Estimate parameters of a population, Yate's Correction. Module: Linear Programming Problems	02	multiply connected regions (without proof), Cauchy's Integral formula (without proof). 2.2 Taylor's and Laurent's series (without proof).	7	CO2
Self-learning Topics: Application of Residue Theorem to evaluate real integrations. Module: Z Transform 3.1 Definition and Region of Convergence, Transform of Standard Functions: {k^na^k}, {a^{ k }}, {k^+n_n^n C. a^k}, {c^k \sin(ak + β)}, {c^k \sinh ak}, {c^k \cosh ak}. 3.2 Properties of Z Transform: Change of Scale, Shifting Property, Multiplication, and Division by k, Convolution theorem. 3.3 Inverse Z transform: Partial Fraction Method, Convolution Method. Self-learning Topics: Initial value theorem, Final value theorem, Inverse of Z Transform by Binomial Expansion Module: Probability Distribution and Sampling Theory 4.1 Probability Distribution: Poisson and Normal distribution 4.2 Sampling distribution, Test of Hypothesis, Level of Significance, Critical region, One-tailed, and two-tailed test, Degree of freedom. 4.3 Students' t-distribution (Small sample). Test the significance of mean and Difference between the means of two samples. Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table. Self-learning Topics: Test significance for Large samples, Estimate parameters of a population, Yate's Correction. Module: Linear Programming Problems	02		<i>J</i> '	
integrations. Module: Z Transform 3.1 Definition and Region of Convergence, Transform of Standard Functions: {k^na^k}, {a^{ k }}, {k^+_n^n C. a^k}, {c^k \sin(ak + β)}, {c^k \sinh ak}, {c^k \cosh ak}. 3.2 Properties of Z Transform: Change of Scale, Shifting Property, Multiplication, and Division by k. Convolution theorem. 3.3 Inverse Z transform: Partial Fraction Method, Convolution Method. Self-learning Topics: Initial value theorem, Final value theorem, Inverse of Z Transform by Binomial Expansion Module: Probability Distribution and Sampling Theory 4.1 Probability Distribution: Poisson and Normal distribution 4.2 Sampling distribution, Test of Hypothesis, Level of Significance, Critical region, One-tailed, and two-tailed test, Degree of freedom. 4.3 Students' t-distribution (Small sample). Test the significance of mean and Difference between the means of two samples. Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table. Self-learning Topics: Test significance for Large samples, Estimate parameters of a population, Yate's Correction. Module: Linear Programming Problems		Residue Theorem (without proof)		
integrations. Module: Z Transform 3.1 Definition and Region of Convergence, Transform of Standard Functions: {k^na^k}, {a^{ k }}, {k^+_n^n C. a^k}, {c^k \sin(ak + β)}, {c^k \sinh ak}, {c^k \cosh ak}. 3.2 Properties of Z Transform: Change of Scale, Shifting Property, Multiplication, and Division by k. Convolution theorem. 3.3 Inverse Z transform: Partial Fraction Method, Convolution Method. Self-learning Topics: Initial value theorem, Final value theorem, Inverse of Z Transform by Binomial Expansion Module: Probability Distribution and Sampling Theory 4.1 Probability Distribution: Poisson and Normal distribution 4.2 Sampling distribution, Test of Hypothesis, Level of Significance, Critical region, One-tailed, and two-tailed test, Degree of freedom. 4.3 Students' t-distribution (Small sample). Test the significance of mean and Difference between the means of two samples. Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table. Self-learning Topics: Test significance for Large samples, Estimate parameters of a population, Yate's Correction. Module: Linear Programming Problems				
 Module: Z Transform 3.1 Definition and Region of Convergence, Transform of Standard Functions: {k^na^k}, {a^{ k }}, {k^{+n}C.a^k}, {c^k sin(αk + β)}, {c^k sinh αk}, {c^k cosh αk}.		Self-learning Topics: Application of Residue Theorem to evaluate real		
3.1 Definition and Region of Convergence, Transform of Standard Functions: {k^na^k}, {a^{ k }}, {k^+n^*_n C. a^k}, {c^k sin(αk + β)}, {c^k sinh αk}, {c^k cosh αk}. 3.2 Properties of Z Transform: Change of Scale, Shifting Property,				
Functions: {k ⁿ a ^k }, {a ^k }, {k ⁺ n ⁿ C. a ^k }, {c ^k sin(αk + β)}, {c ^k sinh αk}, {c ^k cosh αk}. 3.2 Properties of Z Transform: Change of Scale, Shifting Property, Multiplication, and Division by k. Convolution theorem. 3.3 Inverse Z transform: Partial Fraction Method, Convolution Method. Self-learning Topics: Initial value theorem, Final value theorem, Inverse of Z Transform by Binomial Expansion Module: Probability Distribution and Sampling Theory 4.1 Probability Distribution: Poisson and Normal distribution 4.2 Sampling distribution, Test of Hypothesis, Level of Significance, Critical region, One-tailed, and two-tailed test, Degree of freedom. 4.3 Students' t-distribution (Small sample). Test the significance of mean and Difference between the means of two samples. Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table. Self-learning Topics: Test significance for Large samples, Estimate parameters of a population, Yate's Correction. Module: Linear Programming Problems				
 {kⁿa^k}, {a^k}, {k⁺nⁿC. a^k}, {c^k sin(αk + β)}, {c^k sinh αk}, {c^k cosh αk}. 3.2 Properties of Z Transform: Change of Scale, Shifting Property, Multiplication, and Division by k, Convolution theorem. 3.3 Inverse Z transform: Partial Fraction Method, Convolution Method. Self-learning Topics: Initial value theorem, Final value theorem, Inverse of Z Transform by Binomial Expansion Module: Probability Distribution and Sampling Theory 4.1 Probability Distribution: Poisson and Normal distribution 4.2 Sampling distribution, Test of Hypothesis, Level of Significance, Critical region, One-tailed, and two-tailed test, Degree of freedom. 4.3 Students' t-distribution (Small sample). Test the significance of mean and Difference between the means of two samples. Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table. Self-learning Topics: Test significance for Large samples, Estimate parameters of a population, Yate's Correction. Module: Linear Programming Problems 				
3.2 Properties of Z Transform: Change of Scale, Shifting Property, Multiplication, and Division by R. Convolution theorem. 3.3 Inverse Z transform: Partial Fraction Method, Convolution Method. Self-learning Topics: Initial value theorem, Final value theorem, Inverse of Z Transform by Binomial Expansion Module: Probability Distribution and Sampling Theory 4.1 Probability Distribution: Poisson and Normal distribution 4.2 Sampling distribution, Test of Hypothesis, Level of Significance, Critical region, One-tailed, and two-tailed test, Degree of freedom. 4.3 Students' t-distribution (Small sample). Test the significance of mean and Difference between the means of two samples. Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table. Self-learning Topics: Test significance for Large samples, Estimate parameters of a population, Yate's Correction. Module: Linear Programming Problems				
Multiplication, and Division by R. Convolution theorem. 3.3 Inverse Z transform: Partial Fraction Method, Convolution Method. Self-learning Topics: Initial value theorem, Final value theorem, Inverse of Z Transform by Binomial Expansion Module: Probability Distribution and Sampling Theory 4.1 Probability Distribution: Poisson and Normal distribution 4.2 Sampling distribution, Test of Hypothesis, Level of Significance, Critical region, One-tailed, and two-tailed test, Degree of freedom. 4.3 Students' t-distribution (Small sample). Test the significance of mean and Difference between the means of two samples. Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table. Self-learning Topics: Test significance for Large samples, Estimate parameters of a population, Yate's Correction. Module: Linear Programming Problems		$\{k^n a^k\}, \{a^{ k }\}, \{k^n c. a^k\}, \{c^k \sin(\alpha k + \beta)\}, \{c^k \sinh \alpha k\}, \{c^k \cosh \alpha k\}.$		
3.3 Inverse Z transform: Partial Fraction Method, Convolution Method. Self-learning Topics: Initial value theorem, Final value theorem, Inverse of Z Transform by Binomial Expansion Module: Probability Distribution and Sampling Theory 4.1 Probability Distribution: Poisson and Normal distribution 4.2 Sampling distribution, Test of Hypothesis, Level of Significance, Critical region, One-tailed, and two-tailed test, Degree of freedom. 4.3 Students' t-distribution (Small sample). Test the significance of mean and Difference between the means of two samples. Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table. Self-learning Topics: Test significance for Large samples, Estimate parameters of a population, Yate's Correction. Module: Linear Programming Problems		3.2 Properties of Z Transform: Change of Scale, Shifting Property,		
Self-learning Topics: Initial value theorem, Final value theorem, Inverse of Z Transform by Binomial Expansion Module: Probability Distribution and Sampling Theory 4.1 Probability Distribution: Poisson and Normal distribution 4.2 Sampling distribution, Test of Hypothesis, Level of Significance, Critical region, One-tailed, and two-tailed test, Degree of freedom. 4.3 Students' t-distribution (Small sample). Test the significance of mean and Difference between the means of two samples. Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table. Self-learning Topics: Test significance for Large samples, Estimate parameters of a population, Yate's Correction. Module: Linear Programming Problems	03	Multiplication, and Division by k, Convolution theorem.	5	CO3
Module: Probability Distribution and Sampling Theory 4.1 Probability Distribution: Poisson and Normal distribution 4.2 Sampling distribution, Test of Hypothesis, Level of Significance, Critical region, One-tailed, and two-tailed test, Degree of freedom. 4.3 Students' t-distribution (Small sample). Test the significance of mean and Difference between the means of two samples. Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table. Self-learning Topics: Test significance for Large samples, Estimate parameters of a population, Yate's Correction. Module: Linear Programming Problems		3.3 Inverse Z transform: Partial Fraction Method, Convolution Method.		
4.1 Probability Distribution: Poisson and Normal distribution 4.2 Sampling distribution, Test of Hypothesis, Level of Significance, Critical region, One-tailed, and two-tailed test, Degree of freedom. 4.3 Students' t-distribution (Small sample). Test the significance of mean and Difference between the means of two samples. Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table. Self-learning Topics: Test significance for Large samples, Estimate parameters of a population, Yate's Correction. Module: Linear Programming Problems				
4.2 Sampling distribution, Test of Hypothesis, Level of Significance, Critical region, One-tailed, and two-tailed test, Degree of freedom. 4.3 Students' t-distribution (Small sample). Test the significance of mean and Difference between the means of two samples. Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table. Self-learning Topics: Test significance for Large samples, Estimate parameters of a population, Yate's Correction. Module: Linear Programming Problems				
Critical region, One-tailed, and two-tailed test, Degree of freedom. 4.3 Students' t-distribution (Small sample). Test the significance of mean and Difference between the means of two samples. Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table. Self-learning Topics: Test significance for Large samples, Estimate parameters of a population, Yate's Correction. Module: Linear Programming Problems				
region, One-tailed, and two-tailed test, Degree of freedom. 4.3 Students' t-distribution (Small sample). Test the significance of mean Difference between the means of two samples. Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table. Self-learning Topics: Test significance for Large samples, Estimate parameters of a population, Yate's Correction. Module: Linear Programming Problems		4.2 Sampling distribution, Test of Hypothesis, Level of Significance,		
4.3 Students' t-distribution (Small sample). Test the significance of mean Difference between the means of two samples. Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table. Self-learning Topics: Test significance for Large samples, Estimate parameters of a population, Yate's Correction. Module: Linear Programming Problems		Critical		
 4.3 Students' t-distribution (Small sample). Test the significance of mean and Difference between the means of two samples. Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table. Self-learning Topics: Test significance for Large samples, Estimate parameters of a population, Yate's Correction. Module: Linear Programming Problems 		region, One-tailed, and two-tailed test, Degree of freedom.		CO4
Difference between the means of two samples. Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table. Self-learning Topics: Test significance for Large samples, Estimate parameters of a population, Yate's Correction. Module: Linear Programming Problems			6	004
goodness of fit and independence of attributes, Contingency table. Self-learning Topics: Test significance for Large samples, Estimate parameters of a population, Yate's Correction. Module: Linear Programming Problems				
Self-learning Topics: Test significance for Large samples, Estimate parameters of a population, Yate's Correction. Module: Linear Programming Problems				
parameters of a population, Yate's Correction. Module: Linear Programming Problems		goodness of the and independence of attributes, Contingency table.		
parameters of a population, Yate's Correction. Module: Linear Programming Problems		Self-learning Topics: Test significance for Large samples. Estimate		
Module: Linear Programming Problems				
2.1 1 Jpos of softwions, Standard and Canonical of Lift, Dasic and Lousinic		5.1 Types of solutions, Standard and Canonical of LPP, Basic and Feasible		
solutions, slack variables, surplus variables, Simplex method.		••		
05 5.2 Artificial variables, Big-M method (Method of penalty) 6 CO.	05	•	6	CO5
5.3 Duality, Dual of LPP and Dual Simplex Method				

	Self-learning Topics: SensitivityAnalysis,Two-Phase Simplex Method,		
	Revised Simplex Method.		
	Module: Nonlinear Programming Problems		
	6.1 NLPP with one equality constraint (two or three variables) using the		
	method of Lagrange's multipliers		
	6.2 NLPP with two equality constraints		COC
06	6.3 NLPP with inequality constraint: Kuhn-Tucker conditions	6	CO6
	Self-learning Topics: Problems with two inequality constraints,		
	Unconstrained optimization: One-dimensional search method (Golden		
	Search method, Newton's method). Gradient Search method		

References:

- 1. Advanced Engineering Mathematics, Erwin Kreyszig, John Wiley & Sons.
- 2. Advanced Engineering Mathematics, R. K. Jain and S. R. K. Iyengar, Narosa.
- 3. Complex Variables and Applications, Brown and Churchill, McGraw-Hill Education.
- 4. Probability, Statistics and Random Processes, T. Veerarajan, McGraw-Hill Education.
- 5. Operations Research: An Introduction, Hamdy A Taha, Pearson.
- 6. Engineering Optimization: Theory and Practice, S.S Rao, Wiley-Blackwell.
- 7. Operations Research, Hira and Gupta, S. Chand Publication.

Online References:

Sr. No.	Website Name	
1.	https://www.nptel.ac.in	

Term Work:

General Instructions:

- 1. Batch wise tutorials have to be conducted. The number of students per batch will be as per University pattern for practicals.
- 2. Students must be encouraged to write at least 6 class tutorials on the entire syllabus.
- 3. A group of 4-6 students should be assigned a self-learning topic. Students should prepare a presentation/problem solving of 10-15 minutes. This will be considered as a mini project in Engineering Mathematics. This project will be graded out of 10 marks depending on the performance of the students.

The distribution of Term Work marks will be as follows –

1. Attendance (Theory and Tutorial)	05 marks
2. Class Tutorials on entire syllabus	10 marks
3. Mini project	10 marks

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- 1. The question paper will comprise a total of 6 questions, each carrying 20 marks.
- 2. Out of the 6 questions, 4 questions have to be attempted.
- 3. Question 1, based on the entire syllabus, will have 4 sub-questions of 5 marks each and is compulsory.
- 4. Question 2 to Question 6 will have 3 sub-questions, each of 6, 6, and 8 marks, respectively.
- 5. Each sub-question in (4) will be from different modules of the syllabus.
- 6. Weightage of each module will be proportional to the number of lecture hours, as mentioned in the syllabus.

Course Code	Course	Teaching Scheme (Contact Hours)			Credits Assigned			
	Name	Theory Practical Tutorial			Theory	Practical	Tutorial	Total
						/Oral		
ITC402	Computer Network and Network Design	03			03			03

Course	Course								
Code	Name		Theory Marks						
		Inte	ernal asse	ssment	End	Term Work	Pract. /Oral	Total	
		Test1	Test 2	Avg.	Sem. Exam	Term work	Tract. /Oran	Total	
ITC402	Computer Network and Network Design	20	20	20	80			100	

Course Objectives:

Sr. No.	Course Objectives
The cours	se aims:
1	Understand the division of network functionalities into layers.
2	Understand the types of transmission media along with data link layer concepts, design issues and protocols
3	Analyze the strength and weaknesses of routing protocols and gain knowledge about IP addressing
4	Understand the data transportation, issues and related protocols for end to end delivery of data.
5	Understand the data presentation techniques used in presentation layer & client/server model in application layer protocols.
6	Design a network for an organization using networking concepts

Course Outcomes:

Sr. No.	Course Outcomes cessful completion, of course, learner/student will be able to:	Cognitive levels of attainment as per Bloom's Taxonomy
1	Describe the functionalities of each layer of the models and compare the Models.	L1
2	Categorize the types of transmission media and explain data link layer concepts, design issues and protocols.	L2, L3, L4
3	Analyze the routing protocols and assign IP address to networks.	L4
4	Explain the data transportation and session management issues and related protocols used for end to end delivery of data.	L1, L2
5	List the data presentation techniques and illustrate the client/server model in application layer protocols.	L1, L3
6	Use of networking concepts of IP address, Routing, and application services to design a network for an organization	L3

Prerequisite: PCOM

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Terminologies of communication	02	-
I	Introduction to Computer Networks	Uses Of Computer Networks, Network Hardware, Network Software, Protocol Layering, Reference Models: OSI, TCP/IP, Comparison of OSI & TCP/IP, Network Devices.	03	CO1
		Self-learning Topics: Identify the different devices used in Network connection. College campus		
II	Physical Layer & Data Link Layer	Physical layer: Guided Media, Unguided Media, Wireless Transmission: Electromagnetic Spectrum. Switching: Circuit-Switched Networks, Packet Switching, Structure Of A Switch DLL Design Issues (Services, Framing, Error Control, Flow Control), Error Detection and Correction(Hamming Code,Parity, CRC, Checksum), Elementary Data Link protocols: Stop and Wait, Sliding Window(Go Back N, Selective Repeat), Piggybacking, HDLC Medium Access Protocols: Random Access, Controlled Access, Channelization. Ethernet Protocol: Standard Ethernet, Fast Ethernet (100 Mbps), Gigabit Ethernet, 10-Gigabit Ethernet. Self-learning Topics: Differentiate link layer in IOT network and Normal Network.	08	CO2
III	Network Layer	Network Layer Services, Packet Switching, Network Layer Performance, IPv4 Addressing (classful and classless), Subnetting, Supernetting ,IPv4 Protocol, DHCP, Network Address Translation (NAT). Routing algorithms: Distance Vector Routing, Link state routing, Path Vector Routing.	08	CO3
		Protocols –RIP,OSPF,BGP.		
		Next Generation IP: IPv6 Addressing,IPv6 Protocol, Transition fromIPV4 to IPV6		
		Self-learning Topics: Study difference between IPV4 and IPV6. Network Class A, B, C, D, E and subnet mask.		

IV	Transport Layer & Session Layer	Transport Layer: Transport Layer Services, Connectionless & Connection-oriented Protocols, Transport Layer protocols: User Datagram Protocol: UDP Services, UDP Applications, Transmission Control Protocol: TCP Services, TCP Features, Segment, A TCP Connection, Windows in TCP, Flow Control, Error Control, TCP Congestion Control, TCP Timers. Session Layer: Session layer design issues, Session Layer protocol - Remote Procedure Call (RPC), Self-learning Topics: List real time example of UDP and TCP.	07	CO4
V	Presentation Layer & Application Layer	Presentation layer: Compression: Comparison between Lossy Compression and Lossless Compression, Huffman Coding, Speech Compression, LZW, RLE, Image Compression – GIF, JPEG. Application layer: Standard Client-Server Protocols: World Wide Web, HTTP, FTP, Electronic Mail, Domain Name System (DNS), SNMP Self-learning Topics: Difference between HTTP and FTP Protocol.	05	CO5
VI	Network Design Concepts	Introduction to VLAN, VPN A case study to design a network for an organization meeting the following guidelines: Networking Devices, IP addressing: Subnetting, Supernetting, Routing Protocols to be used, Services to be used: TELNET, SSH, FTP server, Web server, File server, DHCP server and DNS server. Self-learning Topics: Study the Network Design of your college campus.	06	CO6

Text Books:

- 1. Andrew S Tanenbaum, Computer Networks -, 4th Edition, Pearson Education.
- 2. Behrouz A. Forouzan, Data Communications and Networking ,4th Edition,Mc Graw Hill education.

References:

- 1. S. Keshav, An Engineering Approach to Computer Networks, 2nd Edition, Pearson Education.
- 2.B. A. Forouzan, "TCP/IP Protocol Suite", Tata McGraw Hill edition, Third Edition.
- 3. Ranjan Bose, Information Theory, Coding and Cryptography, Ranjan Bose, Tata McGrawHill, Second Edition.
- 4. Khalid Sayood, Introduction to Data Compression, Third Edition, Morgan Kaufman.

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in
2.	https://swayam.gov.in
3.	https://www.coursera.org/

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marks Q.1 will be compulsory and should cover maximum contents of the syllabus
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered

Course Code	Teaching Scheme Credits Assigned (Contact Hours)							
	Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
					-	/Oral		
ITC403	Operating System	03			03			03

Course	Course				Examina	ation Scheme		
Code	Name		Theo	ry Marks				
		Inte	rnal asse	ssment	End	Term Work	Work Pract. /Oral	Total
		Test1	Test 2	Avg.	Sem. Exam	Term Work		Total
ITC403	Operating System	20	20	20	80			100

Course Objectives:

Sr. No.	Course Objectives
The cour	se aims:
1	To understand the major components of Operating System &its functions.
2	To introduce the concept of a process and its management like transition, scheduling, etc.
3	To understand basic concepts related to Inter-process Communication (IPC) like mutual exclusion, deadlock, etc. and role of an Operating System in IPC.
4	To understand the concepts and implementation of memory management policies and virtual memory.
5	To understand functions of Operating System for storage management and device management.
6	To study the need and fundamentals of special-purpose operating system with the advent of new emerging technologies.

Course Outcomes:

Sr.	Course Outcomes	Cognitive levels
No.		of attainment as per Bloom's
		Taxonomy
On succ	cessful completion, of course, learner/student will be able to:	
1	Understand the basic concepts related to Operating System.	L1, L2
2	Describe the process management policies and illustrate scheduling of	L1
	processes by CPU.	
3	Explain and apply synchronization primitives and evaluate deadlock	L2
	conditions as handled by Operating System.	
4	Describe and analyze the memory allocation and management functions of	L1
	Operating System.	
5	Analyze and evaluate the services provided by Operating System for storage	L4, L5
	management.	
6	Compare the functions of various special-purpose Operating Systems.	L2

Prerequisite: Programming Language C

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Programming Language C; Basic of Hardware i.e. ALU, RAM, ROM, HDD, etc.; Computer-System Organization.	02	-
I	Fundamentals of Operating System	Introduction to Operating Systems; Operating System Structure and Operations; Functions of Operating Systems; Operating System Services and Interface; System Calls and its Types; System Programs; Operating System Structure; System Boot.	03	COI
		Self-learning Topics: Study of any three different OS. System calls with examples for different OS.		
II	Process Management	Basic Concepts of Process; Operation on Process; Process State Model and Transition; Process Control Block; Context Switching; Introduction to Threads; Types of Threads, Thread Models; Basic Concepts of Scheduling; Types of Schedulers; Scheduling Criteria; Scheduling Algorithms. Self-learning Topics: Performance comparison of Scheduling Algorithms, Selection of Scheduling Algorithms for different situations, Real-time Scheduling	06	CO2
III	ProcessCoordinati	Basic Concepts of Inter-process Communication and Synchronization; Race Condition; Critical Region and Problem; Peterson's Solution; Synchronization Hardware and Semaphores; Classic Problems of Synchronization; Message Passing; Introduction to Deadlocks; System Model, Deadlock Characterization; Deadlock Detection and Recovery; Deadlock Prevention; Deadlock Avoidance.	09	CO3
		Self-learning Topics: Study a real time case study for Deadlock detection and recovery.		
IV	Memory Management	Basic Concepts of Memory Management; Swapping; Contiguous Memory Allocation; Paging; Structure of Page Table; Segmentation; Basic Concepts of Virtual Memory; Demand Paging, Copy-on Write; Page Replacement Algorithms; Thrashing.	09	CO4
		Self-learning Topics: Memory Management		

		for any one Operating System, Implementation of Page Replacement Algorithms.		
V	Storage Management	Basic Concepts of File System; File Access Methods; Directory Structure; File-System Implementation; Allocation Methods; Free Space Management; Overview of Mass-Storage Structure; Disk Structure; Disk Scheduling; RAID Structure; Introduction to I/O Systems.	06	CO5
		Self-learning Topics: File System for Linux and Windows, Features of I/O facility for different OS.		1
VI	Special-purpose Operating Systems	Open-source and Proprietary Operating System; Fundamentals of Distributed Operating System; Network Operating System; Embedded Operating Systems; Cloud and IoT Operating Systems; Real-Time Operating System; Mobile Operating System; Multimedia Operating System; Comparison between Functions of various Special-purpose Operating Systems. Self-learning Topics: Case Study on any one	04	CO6
		Special-purpose Operating Systems.		

Text Books:

- 1. A. Silberschatz, P. Galvin, G. Gagne, Operating System Concepts, 10th ed., Wiley, 2018.
- 2. W. Stallings, Operating Systems: Internal and Design Principles, 9th ed., Pearson, 2018.
- 3. A. Tanenbaum, Modern Operating Systems, Pearson, 4th ed., 2015.

Reference Books:

- 1. N. Chauhan, Principles of Operating Systems, 1st ed., Oxford University Press, 2014.
- 2. A. Tanenbaum and A. Woodhull, Operating System Design and Implementation, 3rd ed., Pearson.
- 3. R. Arpaci-Dusseau and A. Arpaci-Dusseau, Operating Systems: Three Easy Pieces, CreateSpace Independent Publishing Platform, 1st ed., 2018.

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in
2.	https://swayam.gov.in
3.	https://www.coursera.org/

Assessment:

Internal Assessment (IA) for 20 marks:

IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marks Q.1 will be compulsory and should cover maximum contents of the syllabus
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered

Course Code	Teaching Scheme Credits Assigned (Contact Hours)			S				
	Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
						/Oral		
ITC404	Automata Theory	03			03			03

Course	se Course Examina				ation Scheme		
Code	Name		Theo	ry Marks			
		Inte	ernal asse	ssment	End	Term Work	Pract. /Oral Total
		Test1	Test 2	Avg.	Sem. Exam	Term work	Tract. /Oral Total
ITC404	Automata Theory	20	20	20	80		100

Course Objectives:

Sr. No.	Course Objectives
The cours	se aims:
1	To learn fundamentals of Regular and Context Free Grammars and Languages.
2	To understand the relation between Regular Language and Finite Automata and
	machines.
3	To learn how to design Automata's as Acceptors, Verifiers and Translators.
4	To understand the relation between Regular Languages, Contexts free Languages, PDA
	and TM.
5	To learn how to design PDA as acceptor and TM as Calculators.
6	To learn applications of Automata Theory.

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy			
On succ	essful completion, of course, learner/student will be able to:				
1	Explain, analyze and design Regular languages, Expression and Grammars.	L2, L4, L6			
2	Design different types of Finite Automata and Machines as Acceptor, L6				
	Verifier and Translator.				
3	Analyze and design Context Free languages and Grammars.	L4, L6			
4	Design different types of Push down Automata as Simple Parser.	L6			
5	Design different types of Turing Machines as Acceptor, Verifier, Translator	L6			
	and Basic computing machine.				
6	Develop understanding of applications of various Automata.	L6			

Prerequisite: Basic Mathematical Fundamentals: Sets, Logic, Relations, Functions.

Sr.	Module	Detailed Content	Hours	CO
No.				Mapping
0	Prerequisite	Basic Mathematical Fundamentals: Sets, Logic, Relations, Functions.	02	-
I	Introduction and	Languages: Alphabets and Strings.	05	CO1
	Regular	Regular Languages: Regular		
	Languages	Expressions, Regular Languages,		
		Regular Grammars, RL and LL		
		grammars, Closure properties		
		Self-learning Topics: Practice exercise on Regular		
		Expressions. Identify the tools also.		
II	Finite Automata	Finite Automata: FA as language	09	CO2
		acceptor or verifier, NFA (with and		
		without ε), DFA, RE to NFA, NFA to DFA,		
		Reduced DFA , NFA-DFA		
		equivalence, FA to RE.		
		Finite State Machines with output: Moore and		
		Mealy machines. Moore and Mealy M/C conversion. Limitations of FA.		
		Self-learning Topics: Practice exercise on FA and		
		NFA		
III	Context Free	Context Free Languages: CFG,	08	CO3
	Grammars	Leftmost and Rightmost derivations, Ambiguity,		
		Simplification and Normalization (CNF & GNF)		
		and Chomsky Hierarchy (Types 0 to 3)		
		Self-learning Topics: Practice numerical or		
		exercise on CFG		
IV	Push Down	Push Down Automata: Deterministic (single stack)	05	CO4
	Automata	PDA, Equivalence between PDA and CFG. Power		
		and Limitations of PDA.		
		Self-learning Topics: List the examples of PDA.		
V	Turing	Turing Machine: Deterministic TM, Variants of	07	CO5
	Machine	TM, Halting problem, Power of TM.		
		Self-learning Topics: Practice numerical of TM.	0 -	G04 77
VI	Applications of	Applications of FA, CFG, PDA & TM. Introduction	03	CO2,CO
	Automata	to Compiler & Its phases.		3,
				CO4,CO
		Self-learning Topics: Case study on any one		5, CO6
		compiler.		

Text books

- 1. J.C.Martin, "Introduction to languages and the Theory of Computation", TMH.
- 2. Kavi Mahesh, "Theory of Computation A Problem Solving Approach", Wiley India
- 3. A. V. Aho, Ř. Shethi, Monica Lam , J.D. Ulman , "Compilers Principles, Techniques and Tools ",Pearson Education.

References

- 1. John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, "Introduction to Automata Theory, Languages and Computation", Pearson Education.
- 2. Daniel I.A. Cohen, "Introduction to Computer Theory", John Wiley & Sons.
- 3. Vivek Kulkarni," Theory of Computation", Oxford University.
- 4. N.Chandrashekhar, K.L.P. Mishra, "Theory of Computer Science, Automata Languages & Computations", PHI publications.

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in
2.	https://online.stanford.edu
3.	https://www.coursera.org/

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marks Q.1 will be compulsory and should cover maximum contents of the syllabus
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered

Course Code	Course	Teaching (Contact			Credits	Assigned		
	Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
						/Oral		
ITC405	Computer Organization and Architecture	03			03			03

Course	Course	Examination Scheme						
Code	Name		Theo	ry Marks				
		Inte	ernal asse	ssment	End	Term Work	Pract. /Oral Total	
		Test1	Test 2	Avg.	Sem. Exam	Term work	Fract. /Oral Total	
ITC405	Computer Organization and Architecture	20	20	20	80		100	

Course Objectives:

Sr. No.	Course Objectives
The cour	se aims:
1	Learn the fundamentals of Digital Logic Design.
2	Conceptualize the basics of organizational and features of a digital computer.
3	Study microprocessor architecture and assembly language programming.
4	Study processor organization and parameters influencing performance of a processor.
5	Analyse various algorithms used for arithmetic operations.
6	Study the function of each element of memory hierarchy and various data transfer techniques used in digital computer.

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On succ	cessful completion, of course, learner/student will be able to:	1
1	Demonstrate the fundamentals of Digital Logic Design	L1, L2
2	Describe basic organization of computer, the architecture of 8086 microprocessor and implement assembly language programming for 8086 microprocessors.	L1
3	Demonstrate control unit operations and conceptualize instruction level parallelism.	L1, L2
4	List and Identify integers and real numbers and perform computer arithmetic operations on integers.	L1,L4
5	Categorize memory organization and explain the function of each element of a memory hierarchy.	L4
6	Examine different methods for computer I/O mechanism.	L3

Prerequisite: Basics of Electrical Engineering, Fundamentals of Computer.

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Basics of Electrical Engineering, Fundamentals of Computer	02	
I	Fundamentals of Logic Design	Number systems: Introduction to Number systems, Binary Number systems, Signed Binary Numbers, Binary, Octal, Decimal and Hexadecimal number and their conversions, 1's and 2's complement Combinational Circuits:	07	CO1
		NOT,AND,OR,NAND,NOR,EX-OR,EX-NOR Gates. Half & Full Adder and subtractor, Reduction of Boolean functions using K-map method (2,3,4 Variable), introduction to Multiplexers and Demultiplexers, Encoders & Decoders. Sequential Circuits: Introduction to Flip Flops: SR, JK,		
		D, T, master slave flip flop, Truth Table. Self-learning Topics: Number System, Quine-McCluskey, Flip-Flop conversion, Counter Design.	>	
II	Overview of Computer Architecture & Organization	Introduction of Computer Organization and Architecture. Basic organization of computer and block level description of the functional units. Evolution of Computers, Von Neumann model. Performance measure of Computer Architecture, Amdahl's Law Architecture of 8086 Family, Instruction Set, Addressing Modes, Assembler Directives, Mixed-Language Programming, Stack, Procedure, Macro. Self-learning Topics: Interfacing of I/O devices with 8086(8255, ADC, DAC).	08	CO2
III	Processor Organization and Architecture	CPU Architecture, Instruction formats, basic instruction cycle with Interrupt processing. Instruction interpretation and sequencing. Control Unit: Soft wired (Microprogrammed) and hardwired control unit design methods. Microinstruction sequencing and execution. Micro operations, concepts of nano programming. Introduction to parallel processing concepts, Flynn's classifications, instruction pipelining, pipeline hazards. Self-learning Topics: Study the examples on instruction pipelining for practice.	07	CO3
IV	Data Representation and Arithmetic Algorithms	Booth's algorithm. Division of integers: Restoring and non-restoring division, signed division, basics of floating-point representation IEEE 754 floating point (Single & double precision) number representation. Self-learning Topics: Implement Booth's Algorithm and Division methods.	04	CO4
V	Memory Organization	Introduction to Memory and Memory parameters. Classifications of primary and secondary memories. Types of RAM and ROM, Allocation policies, Memory hierarchy and characteristics. Cache memory: Concept, architecture (L1, L2, L3), mapping techniques. Cache Coherency, Interleaved and Associative memory	07	CO5

		Self-learning Topics: Case study on Memory		
		Organization, Numerical on finding EAT, Address		
		mapping.		
VI	I/O Organization	Input/output systems, I/O module-need & functions	04	CO6
		and Types of data transfer techniques: Programmed		
		I/O, Interrupt driven I/O and DMA		
		Self-learning Topics: Comparison of all I/O		
		methods.		

Text Books:

- 1. R. P. Jain,"Modern Digital Electronics", TMH
- 2. M. Morris Mano,"Digital Logic and Computer Design", PHI
- 3. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, Computer Organization, Fifth Edition, Tata McGraw-Hill.
- 4. William Stallings, Computer Organization and Architecture: Designing for Performance, Eighth Edition., Pearson
- 5. John Uffenbeck, 8086/8088 family: Design Programming and Interfacing, (Pearson Education

References:

- 1. A. Anand Kumar, "Fundamentals of Digital Circuits",. PHI
- 2. Donald P Leach, Albert Paul Malvino, "Digital Principals & Applications", TMH
- 3. B. Govindarajulu,, Computer Architecture and Organization: Design Principles and Applications, Computer Architecture and Organization: Design Principles and Applications, Tata McGraw-Hill
- 4. Dr. M. Usha, T. S. Srikanth, Computer System Architecture and Organization, First Edition, Wiley-India.
- 5. John P. Hayes, Computer Architecture and Organization, Third Edition., McGraw-Hill
- 6. K Bhurchandi, Advanced Microprocessors & Peripherals, Tata McGraw-Hill Education

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in
2.	https://www.geeksforgeeks.org
3.	https://www.coursera.org/

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marks Q.1 will be compulsory and should cover maximum contents of the syllabus
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered

Lab Code	Lab Name	Teaching Scheme (Contact Hours)			Credits	Assigned		
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITL401	Network Lab		02			01		01

Lab Code	Lab Name		Examination Scheme						
			Theory Marks						
		Inte	rnal asse	ssment	End	Term Work	Pract. /Oral Total		
		Test1	Test 2	Avg.	Sem. Exam	Term work	Tract. Wrait Total		
ITL401	Network Lab					25	25 50		

Lab Objectives:

Sr. No.	Lab Objectives				
The Lab	experiments aims:				
1	To get familiar with the basic network administration commands				
2	To install and configure network simulator and learn basics of TCL scripting.				
3	To understand the network simulator environment and visualize a network topology and observe its performance				
4	To implement client-server socket programs.				
5	To observe and study the traffic flow and the contents of protocol frames.				
6	To design and configure a network for an organization				

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive levels of attainment as
		per Bloom's Taxonomy
On succ	essful completion, of course, learner/student will be able to:	
1	Execute and evaluate network administration commands and demonstrate their	L3, L5
	use in different network scenarios	
2	Demonstrate the installation and configuration of network simulator.	L1, L2
3	Demonstrate and measure different network scenarios and their performance	L1, L2
	behavior.	
4	Implement the socket programming for client server architecture.	L3
5	Analyze the traffic flow of different protocols	L4
6	Design a network for an organization using a network design tool	L6

Prerequisite: C /Java

Hardware & Software Requirements:

Hardware Requirement:	Software requirement:
PC i3 processor and above	NS2.34, Protocol Analyzer (eg. Wireshark),
	C/Java/python

Prerequisite Programming Language (C/Java), Basic commands of windows and Unix/Linux operating system. editor commands (eg nano/vi editor etc) Understanding Basic networking Commands: ifconfig lip, traceroute, tracepath, ping, netstat, ss, dig, nslookup, route, host, arp, hostname, curl or wget, mtr, whois, cepdunap Execute and analyze basic networking commands. NS2.	Sr. No.	Module	Detailed Content	Hours	LO Mapping
Basic commands of windows and Unix/Linux operating system. editor commands (eg nano/vi editor etc) I Fundamentals of Computer Network II Basics of Network simulation II Basics of Network simulation III Simulation of Network simulation III Simulation of Network to Network Topology with different Protocols III Simulation of Network topology with group of nodes and physical layer configuration of Network Topology with mespect to 1. Number of nodes and physical layer configuration of n					5
I Fundamentals of Computer Network Understanding Basic networking Commands: ifconfig lip, traceroute, tracepath, ping, netstat, ss, dig, nslookup, route host, arp, hostname, curl or wget, mtr, whois depdimp host, arp, hostname, curl or wget, mtr, whois depdimp host, arp, hostname, curl or wget, mtr, whois depdimp host, arp, hostname, curl or wget, mtr, whois depdimp host, arp, hostname, curl or wget, mtr, whois depdimp host, arp, hostname, curl or wget, mtr, whois depdimp host, arp, hostname, curl or wget, mtr, whois depdimp host, arp, hostname, curl or wget, mtr, whois depdimp host, arp, hostname, curl or wget, mtr, whois depdimp host, arp, hostname, curl or wget, mtr, whois depdimp host, arp, hostname, curl or wget, mtr, whois depdimp host, arp, hostname, curl or wget, mtr, whois dig, ip, traceroute, tracepath, ping, netstat, ss, dig, nslookup, route host, arg, hostname, curl or wget, mtr, whois dig, ip, traceroute, host, arg, net, not, arg, net, and not get, mtr, whois dig, ip, traceroute, host, arg, net, state, state, dig, networking commands. III	0	Prerequisite	Basic commands of windows and Unix/Linux operating system. editor	02	1
Simulation NS2. Introduction to Tcl Hello Programming Installation and configuring of NS-2 simulator and introduction to Tcl using Hello program O6	I	Computer	Understanding Basic networking Commands: ifconfig ,ip, traceroute, tracepath, ping, netstat, ss, dig, nslookup, route, host, arp, hostname, curl or wget, mtr, whois tepdump	02	1.01
Network Topology with different Protocols	II		NS2. Introduction to Tcl Hello Programming • Installation and configuring of NS-2 simulator	02	LO2
IV Socket Socket Programming with C/Java/python Programming 1. TCP Client, TCP Server	Ш	Network Topology with different	Network topology with respect to 1. Number of nodes and physical layer configuration 2. Graphical simulation ofnetwork with RoutingProtocols(Distance Vector/ Link State Routing) and trafficconsideration (TCP, UDP)using NAM. 3. Analysis of networkperformance for quality ofservice parameters such aspacket-deliveryratio, delayand throughput 4. Comparative analysis of routing protocols with respect to QOS parametersusing Xgraph/gnuplot fordifferent load conditions. • Write TCL scripts to create topologies. Create and run traffics and analyze the result using NS2 • Write TCL scripts for topology with Graphical simulation of traffic consideration (TCP, UDP) using NAM and plot the graph • Implement distance vector and link state routing	06	LO3 LO5
 To study and Implement Socket Programming using TCP. To study and Implement Socket Programming 	IV		Socket Programming with C/Java/python 1. TCP Client, TCP Server 2. UDP Client, UDP Server • To study and Implement Socket Programming using TCP.	04	LO4

		using UDP	
V	Protocol Analyzer	 Study of various Network Protocol Analyzer Tools likeWireshark, tcpdump, Windump, Microsoft Message Analyzer, Ettercap, Nirsoft SmartSniff etc. Install one of the Network protocol analyzer tools and analyze the traffic Study various network protocol analyzer tools and analyze the network traffics using one of the network protocol analyzer tools. 	LO5
VI	Network Design	Network Design for an organization using the following concepts: 1. Addressing (IP Address Assignment), 2. Naming (DNS) 3. Routing • Perform remote login using Telnet Server • Design a network for an organization using the concepts of Addressing (IP Address Assignment), Naming (DNS) and Routing. Also mention the internetworking devices used	LO6

Text Books:

1. Computer Network Simulation in NS2 Basic Concepts and Protocol Implementation.-Prof Neeraj Bhargava, Pramod

Singh Rathore, Dr. Ritu Bhargava, Dr. Abhishek Kumar, First Edition. BPB Publication.

- 2. Packet analysis with Wire shark, Anish Nath, PACKT publishing
- 3. TCP/IP Protocol Suite 4th Edition by Behrouz A. Forouzan

References:

- **1.** NS2.34 Manual
- 2. Practical Packet Analysis: Using Wireshark to Solve Real-World Network Problems by Chris Sanders

Term Work: Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will be held based on the above syllabus.

Lab Code	Lab Name	Teaching Scheme (Contact Hours)			Credits	Assigned		
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITL402	Unix Lab		02			01		01

Lab Code	Lab Name				Examina	ation Scheme	4
		Theory Marks					
		Inte	ernal asse	ssment	End	Term Work	Pract. /Oral Total
		Test1	Test 2	Avg.	Sem. Exam	Term work	Plact./Graf Total
ITL402	Unix Lab					25	25 50

Lab Objectives:

Sr. No.	Lab Objectives						
The Lab	The Lab experiments aims:						
1	To understand architecture and installation of Unix Operating System						
2	To learn Unix general purpose commands and programming in Unix editor environment						
3	To understand file system management and user management commands in Unix.						
4	To understand process management and memory management commands in Unix						
5	To learn basic shell scripting.						
6	To learn scripting using awk and perl languages.						

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy					
On succ	cessful completion, of course, learner/student will be able to:						
1	Understand the architecture and functioning of Unix	L1, L2					
2	Identify the Unix general purpose commands	L4					
3	Apply Unix commands for system administrative tasks such as file system L3 management and user management.						
4	Execute Unix commands for system administrative tasks such as process management and memory management	L4					
5	Implement basic shell scripts for different applications. L3						
6	Implement advanced scripts using awk & perl languages and grep, sed, etc. commandsfor performing various tasks.	L3					

Prerequisite: Programming Language C

Hardware & Software Requirements:

Hardware Requirement:	Software requirement:
PC i3 processor and above	Unix, Editor, Bash shell, Bourne shell and C shell

Sr. No.	Module	Detailed Content	Hours	LO Mapping
0	Prerequisite	Basic Programming Skills, Concepts of Operating System	02	-
I	Introduction to Unix	Case Study: Brief History of UNIX, Unix Architecture; Installation of Unix Operating System	03	LO1
II	Basic Commands	 a) Execution of Unix General Purpose Utility Commands like echo, clear, exit, date, time, uptime, cal, cat, tty, man, which, history, id, pwd, whoami, ping, ifconfig, pr, lp, lpr, lpstat, lpq, lprm, cancel, mail, etc. b) Working with Editor Vi/other editor. 	03	LO2
III	Commands for File System Management and User Management	 a) Study of Unix file system (tree structure), file and directory permissions, single and multiuser environment. b) Execution of File System Management Commands like ls, cd, pwd, cat, mkdir, rmdir, rm, cp, mv, chmod, wc, piping and redirection, grep, tr, echo, sort, head, tail, diff, comm, less, more, file, type, wc, split, cmp, tar, find, vim, gzip, bzip2, unzip, locate, etc. c) Execution of User Management Commands like who, whoami, su, sudo, login, logout, exit, passwd, useradd/adduser, usermod, userdel, groupadd, groupmod, groupdel, gpasswd, chown, chage, chgrp, chfn, etc. 	04	LO3
IV	Commands for Process Management and Memory Management	 a) Execution of Process Management Commands like ps, pstree, nice, kill, pkill, killall, xkill, fg, bg, pgrep, renice, etc. b) Execution of Memory Management Commands like free, /proc/meminfo, top, htop, df, du, vmstat, demidecode, sar, pagesize, etc. 	04	LO4
V	Basic Scripts	 a) Study of Shell, Types of Shell, Variables andOperators b) Execute the following Scripts (at least 6): (i) Write a shell script to perform arithmetic operations. (ii) Write a shell script to calculate simple interest. (iii) Write a shell script to determine largest among three integer numbers. (iv) Write a shell script to determine a given year is leap year or not. 	04	L02, L03, L05

VI	Advanced Scripts	 (v) Write a shell script to print multiplication table of given number using while statement. (vi) Write a shell script to search whether element is present is in the list or not. (vii) Write a shell script to compare two strings. (viii) Write a shell script to read and check if the directory / file exists or not, if not make the directory / file. (ix) Write a shell script to implement menu-driven calculator using case statement. (x) Write a shell script to print following pattern: * * * * * * * * * * * * * * * * * * *	.06	LO2, L03, L06

Text Books:

- 1. S. Das, Unix Concepts and Applications, 4th ed., McGraw Hill, 2017.
- 2. R. Michael, Mastering Unix Shell Scripting, 2nd ed., Wiley, 2008.
- 3. D. Ambawade, D. Shah, Linux Labs and Open Source Technologies, Dreamtech Press, 2014.

References:

- 1. Y. Kanetkar, Unix Shell Programming, BPB Publications, 2003.
- 2. B. Forouzan and R. Gilberg, Unix and Shell Programming, Cengage Learning, 2003.

Term Work: Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will be held based on the above syllabus.

Lab Code	Lab Name	Teaching Scheme (Contact Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITL403	Microprocessor Lab		02			01		01

Lab	Lab Name	Examination Scheme							
Code		Theory Marks					1		
		Inte	rnal asse	ssment	End	Term Work	ork Pract, /Oral	Total	
		Test1	Test 2	Avg.	Sem. Exam	Term work		Total	
ITL403	Microprocessor Lab					25	25	50	

Lab Objectives:

Sr. No.	Lab Objectives
The Lab	experiments aims:
1	Learn assembling and disassembling of PC
2	Design, simulate and implement different digital circuits
3	Get hands on experience with Assembly Language Programming.
4	Study interfacing of peripheral devices with 8086 microprocessor.
5	Realize techniques for faster execution of instructions and improve speed of operation
	and performance of microprocessors.
6	Write and debug programs in TASM/MASM/hardware kits

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On succ	ressful completion, of course, learner/student will be able to:	
1	Demonstrate various components and peripheral of computer system	L2
2	Analyze and design combinational circuits	L4, L6
3	Build a program on a microprocessor using arithmetic & logical instruction set of 8086.	L3
4	Develop the assembly level programming using 8086 loop instruction set	L6
5	Write programs based on string and procedure for 8086 microprocessor.	L1
6	Design interfacing of peripheral devices with 8086 microprocessor.	L6

Prerequisite: Logic Design, Programming Languages(C, C++)

Hardware & Software Requirements:

NOTE: Programs can be executed on assembler or hardware boards.

Hardware Requirement:

- ➤ Motherboard, RAM, Processor, Connectors, Cables, SMPS, HDD, Monitor, Graphics card (optional), and Cabinet.
- > 8086 microprocessor experiment kits with specified interfacing study boards

Software requirement:

- Microsoft Macro Assembler (TASM)/Turbo Assembler (TASM)
- > Virtual simulator lab.
- > Proteus design suite

Sr.	Module	Detailed Content	Hours	LO
No.			7 7	Mapping
I	PC Assembly	Study of PC Motherboard Technology (South	02	LO1
	•	Bridge and North Bridge), Internal		
		Components and Connections used in		
		computer system.		
II	Implementation of	1. Verify the truth table of various logic gates	06	LO2
	combinational	(basic and universal gates)		
	circuits	2. Realize Half adder and Full adder		
		3. Implementation of MUX and DeMUX		
III	Arithmetic and	 Program for 16 bit BCD addition 	05	LO3
	logical operations	2. Program to evaluate given logical		
	in 8086 Assembly	expression.		
	language	3. Convert two digit Packed BCD to		
	programming	Unpacked BCD.		
		(any two)		
IV	Loop operations in	1. Program to move set of numbers from one	06	LO4
	8086 Assembly	memory block to another.		
	language	2. Program to count number of 1's and 0's in		
	programming	a given 8 bit number		
		3. Program to find even and odd numbers		
		from a given list		
		4. Program to search for a given number		
		(any three)		
V	String & Procedure	1. Check whether a given string is a	04	LO5
	in 8086 Assembly	palindrome or not.		
	language .	2. Compute the factorial of a positive integer		
	programming	'n' using procedure.		
		OR		
7.77	T . C	Generate the first 'n' Fibonacci numbers.	0.5	100
VI	Interfacing with	1. Interfacing Seven Segment Display	03	LO6
	8086	2. Interfacing keyboard matrix		
	microprocessor	3. Interfacing DAC		
		(any one)		

Text Books:

- 1. Scott Mueller, "Upgrading and repairing PCs", Pearson,
- 2. R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill.
- 3. John Uffenbeck, "8086/8088 family: Design Programming and Interfacing:"Pearson Education

Reference Books:

- 1. M. Morris Mano, "Digital Logic and computer Design", PHI
- 2. K Bhurchandi, "Advanced Microprocessors & Peripherals", Tata McGraw-Hill Education

Term Work: Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will be held based on the above syllabus

Lab Code	Lab Name	Teaching Scheme (Contact Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITL404	Python Lab (SBL)		04			02		02

Lab Code	Lab Name				Examina	ation Scheme	
			Theo	ry Marks			4
		Inte	rnal asse	ssment	End	Term Work	Pract. /Oral Total
		Test1	Test 2	Avg.	Sem. Exam	Term work	Plact. /Oral Total
ITL404	Python Lab (SBL)					25	25 50

Lab Objectives:

Sr. No.	Lab Objectives
The Lab	experiments aims:
1	Basics of python including data types, operator, conditional statements, looping statements,
	input and output functions in Python
2	List, tuple, set, dictionary, string, array and functions
3	Object Oriented Programming concepts in python
4	Concepts of modules, packages, multithreading and exception handling
5	File handling, GUI & database programming
6	Data visualization using Matplotlib, Data analysis using Pandas and Web programming using
	Flask

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On succ	cessful completion, of course, learner/student will be able to:	
1	Understand the structure, syntax, and semantics of the Python language.	L1, L2
2	Interpret advanced data types and functions in python	L1, L2
3	illustrate the concepts of object-oriented programming as used in Python	L2
4	Create Python applications using modules, packages, multithreading and exception handling.	L6
5	Gain proficiency in writing File Handling programs ,also create GUI applications and evaluate database operations in python.	L1, L2
6	Design and Develop cost-effective robust applications using the latest Python trends and technologies	L6

Prerequisite: Structured Programming Approach & Java Programming Lab

Hardware & Software Requirements:

Hardware Requirements	Software Requirements	Other Requirements		
PC With following Configuration	1. Windows or Linux Desktop OS	1. Internet Connection for installing additional packages if required		
	2. Python 3.6 or higher	_		
1. Intel Dual core Processor or higher	3. Notepad ++			
2. Minimum 2 GB RAM	4.Python IDEs like IDLE, Pycharm, Pydev, Netbeans or			
3. Minimum 40 GB Hard	Eclipse			
disk 4. Network interface card	5. Mysql			

Sr. No.	Module	Detailed Content	Hours	LO Mapping
0	Prerequisite	Python IDE installation and environment setup.	02	
I	Basics of Python	Introduction, Features, Python building blocks – Identifiers, Keywords, Indention, Variables and Comments, Basic data types (Numeric, Boolean, Compound) Operators: Arithmetic, comparison, relational, assignment, logical, bitwise, membership, identity operators, operator precedence Control flow statements: Conditional statements (if, ifelse, nested if) Looping in Python (while loop, for loop, nested loops) Loop manipulation using continue, pass, break. Input/output Functions, Decorators, Iterators and Generators.	08	LO 1
II	Advanced data types & Functions	Lists: a) Defining lists, accessing values in list, deleting values in list, updating lists b) Basic list operations c) Built-in list functions Tuples: a) Accessing values in Tuples, deleting values in Tuples, and updating Tuples b) Basic Tuple operations c) Built-in Tuple functions Dictionaries: a) Accessing values in Dictionary, deleting values in Dictionary, and updating Dictionary b) Basic Dictionary operations c) Built-in Dictionary functions Sets: a) Accessing values in Set, deleting values in Set, updating Sets b) Basic Set operations, c) Built-in Set functions Strings: a) String initialization, Indexing, Slicing, Concatenation, Membership & Immutability b) Built-in String functions Arrays: a) Working with Single dimensional Arrays: Creating, importing, Indexing, Slicing, copying and processing array arrays. b) Working with Multi-dimensional Arrays using Numpy:	09	LO 1 LO 2

		Mathamatical amountions Matrice	1	
		Mathematical operations, Matrix operations,		
		aggregate and other Built-in functions		
		Functions: a) Built-in functions in python b)		
		Defining function, calling function, returning		
		values, passing parameters c) Nested and		
		Recursive functions d) Anonymous Functions		
		(Lambda, Map, Reduce, Filter)		
III	Object Oriented	Overview of Object-oriented programming,	08	LO 1
	Programming	Creating Classes and Objects, Self-Variable,		LO 3
		Constructors, Inner class, Static method,		
		Namespaces.		
		Inheritance: Types of Inheritance (Single,	ļ	
		Multiple, Multi-level, Hierarchical), Super()		
		method, Constructors in inheritance, operator	ļ	
		overloading, Method overloading, Method		
			ļ	
		overriding, Abstract class, Abstract method,		
777	T 1 .	Interfaces in Python.	0.4	101
IV	Exploring concept	Modules: Writing modules, importing objects	06	LO 1
	of modules,	from modules, Python built-in modules (e.g.		LO 4
	packages,	Numeric and Mathematical module, Functional	AL	
	multithreading and	Programming module, Regular Expression	'	
	exception handling	module), Namespace and Scoping.		
		Packages: creating user defined packages and		
		importing packages.	7	
		Multi-threading: process vs thread, use of		
		threads, types of threads, creating threads in		
		python, thread synchronization, deadlock of		
		threads.		
		Exception handling: Compile time errors,		
		Runtime errors, exceptions, types of exception,		
		try statement, except block, raise statement,		
T 7	File be Jui City	Assert statement, User-Defined Exceptions.	00	101
V	File handling, GUI	File Handling: Opening file in different modes,	09	LO 1
	& database	closing a file, writing to a file, accessing file		LO 5
	programming	contents using standard library functions, reading		
		from a file read (), readline (), readlines (),		
		Renaming and Deleting a file, File Exceptions,		
		Pickle in Python.		
		Graphical user interface (GUI): different GUI		
		tools in python (Tkinter, PyQt, Kivy etc.),		
		Working with containers, Canvas, Frame,		
		Widgets (Button, Label, Text, Scrollbar, Check		
		button, Radio button, Entry, Spinbox, Message		
		etc.) Connecting GUI with databases to perform		
\mathcal{A}		CRUD operations. (on supported databases like		
		SQLite, MySQL, Oracle, PostgreSQL etc.).		
VI	Dete vigualization	Visualization using Matplotlib: Matplotlib with	10	LO 1
V I	Data visualization,		10	LO 1 LO 6
	analysis and web	Numpy, working with plots (line plot, bar graph,		LUb
	programming	histogram, scatter plot, area plot, pie chart etc.),		
	using python	working with multiple figures.		
		Data manipulation and analysis using Pandas:		
		Introduction to Pandas, importing data into		
		Python, series, data frames, indexing data frames,		
		basic operations with data frame, filtering,		
		combining and merging data frames, Removing		
		Duplicates.		
		SciPy: Linear algebra functions using Numpy		
		and Scipy.		
		Web programming: Introduction to Flask,		
	I .		1	1
		Creating a Basic Flask Application Build a		
		Creating a Basic Flask Application, Build a Simple REST API using Flask		

List of Experiments/Mini-Project.

	permients/Mini-110Ject.
1)	 Write python programs to understand a) Basic data types, Operators, expressions and Input Output Statements b) Control flow statements: Conditional statements (if, ifelse, nested if) c) Looping in Python (while loop, for loop, nested loops) d) Decorators, Iterators and Generators.
2)	Write python programs to understand a) Different List and Tuple operations using Built-in functions b) Built-in Set and String functions c) Basic Array operations on 1-D and Multidimensional arrays using Numpy d) Implementing User defined and Anonymous Functions
3)	Write python programs to understand a) Classes, Objects, Constructors, Inner class and Static method b) Different types of Inheritance c) Polymorphism using Operator overloading, Method overloading, Method overriding, Abstract class, Abstract method and Interfaces in Python.
4)	 Write python programs to understand a) Creating User-defined modules/packages and import them in a program b) Creating user defined multithreaded application with thread synchronization and deadlocks c) Creating a menu driven application which should cover all the built-in exceptions in python
5)	 Write python programs to understand a) Different File Handling operations in Python b) Designing Graphical user interface (GUI) using built-in tools in python (Tkinter, PyQt, Kivy etc.). c) GUI database connectivity to perform CRUD operations in python (Use any one database like SQLite, MySQL, Oracle, PostgreSQL etc.)
6)	 Write python programs to implement a) Different types of plots using Numpy and Matplotlob b) Basic operations using pandas like series, data frames, indexing, filtering, combining and merging data frames. c) Different Linear algebra functions using Scipy. d) A Basic Flask Application to build a Simple REST API.

❖ Mini Project

Mini-project have to be developed in a group of three students which should cover all above topics. **Suggested Mini-Project Topics:**

		T	
1. Railway reservation	27 IT Team	52. Business Directory	78. Practice Test
system	Workspace		Management.
2. Inventory Management	29 Job Requisition and	53. Education	79. Asset Management
system.	Interview Management	Directory	System
3 Classroom Management	28 Knowledge Base	54. Dental Clinic	80. Travel Agency
		Management	System.
4 Clinical Trial Initiation	29 Lending Library	55. Fund Raising	81. Placement
and Management	e .	Management	Management System.
5 Competitive Analysis	30 Physical Asset	56. Clinic/ Health	82. Polls Management
Web Site	Tracking and	Management	
	Management		
6 Discussion Forum	31 Project Tracking	57. Cable Management	83. Customer
website	Workspace	System	Management
7 Disputed Invoice	32. Shopping Cart .	58. Survey Creation	84. Project
Management	32. Shopping curt.	and Analytics	Management System.
8 Employee Training	33 Knowledge Base	59. Museum	85. Network Marketing
Scheduling and Materials	33 Knowledge Base	Management System	System System
9 Equity Research	34 Lending Library	60. Multi-Level	86. Yoga Health Care
Management	5+ Lending Library	Marketing System	Management
10 Integrated Marketing	35 Physical Asset	61. Learning	87. Personal Finance
Campaign Tracking	Tracking and	Management System	Management System
Campaign Tracking	Management	Wallagement System	Wanagement System
11 Manufacturing Process	36 Project Tracking	62. Knowledge	88. Real Estate
11 Manufacturing Process	Ü		
Managements	Workspace 37 Room and	Management System	Management System 89. Stock Mutual
12 Product and Marketing		63. Missing Person	
Requirements Planning	Equipment Reservations	Site	Funds Management
12 Dequest for Droposal		64. Disaster	90. Careers and
13 Request for Proposal Software	38 Sales Lead Pipeline		
Software		Management Site	Employment Management System
14 Smarta Lagana	20 Vallary Dagas 6	65 Joh Managamant	Management System 91. Music Albums
14 Sports League	39. Yellow Pages &	65. Job Management	
Management	Business Directory	Site 66. Financial Portfolio	Management System 92. Classified Ads
15 Absence Request and Vacation Schedule	40. Time & Billing		/
		Management	Managements
Management	41. Class D	(7. Mayland D. 1	02 Doorsets
16 Budgeting and Tracking	41. Class Room	67. Market Research	93. Property
Multiple Projects	Management	Management	Management System
17 Bug Database	42. Expense Report	68. Order Management	94. Sales & Retail
Management	Database	System	Management
18 Call Center	43. Sales Contact	69. Point of Sale	95. Dating Site
Management Software	Management Database		
19 Change Request	44. Inventory	70. Advertisement	96. Hotel Management
Management	Management Database	/Banner Management	System
		and Analytics	
20 Compliance Process	45. Issue Database	71. Export	97. Search Engine
Support Site		Management System	
21 Contacts Management	46. Event Management	72. Invoice	98. Online News Paper
Software	Database	Management	Site
22 Document Library and	47. Service Call	73. Recruitment	99. Image Gallery
Review	Management Database	Management System	
23 Event Planning and	48. Accounting Ledger	74. Articles / Blog /	100. Staffing and
Management	Database	Wiki Web site	Human Capital
			Management
24 Expense Reimbursement	49. Asset Tracking	75. Online Planner	101. Development of a

and Approval	Database		feature-rich, practical
			Online Survey Tool
			(OST)
25 Help Desk and Ticket	50. Cycle Factory	76. Mock Tests and	102 Development of a
Management	Works Management	Examination	Web/Email based
		Management	Search Engine
26 Inventory Tracking	51. Sales Corporation	77. Examination	103. Development of a
	Management	System	web-based
			Recruitment Process
			System for the HR
			group for a company

Text Books:

- 1. Dr. R. Nageswara Rao," Core Python Programming", Dreamtech Press, Wiley Publication
- 2. M. T. Savaliya, R. K. Maurya, "Programming through Python", StarEdu Solutions.
- 3. E Balagurusamy, "Introduction to computing and problem-solving using python", McGraw Hill Publication.

References:

- 1. Zed A. Shaw, "Learn Python 3 the Hard Way", Zed Shaw's Hard Way Series.
- 2. Martin C. Brown," Python: The Complete Reference", McGraw-Hill Publication.
- 3. Paul Barry," Head First Python", 2nd Edition, O'Reilly Media, Inc.

Online resources:

- 1) https://docs.scipy.org/doc/numpy/user/quickstart.html
- 2) https://matplotlib.org/tutorials/
- 3) https://pandas.pydata.org/docs/getting_started/
- 4) https://www.geeksforgeeks.org/python-build-a-rest-api-using-flask/

Term Work:

The Term work shall consist of at least 15 practical based on the above list. The term work Journal must include at least 2 Programming assignments. The Programming assignments should be based on real world applications which cover concepts from more than one modules of syllabus.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments/tutorial/write up) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will be held based on the above syllabus.

Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITM401	Mini Project – 1 B for Python based automation projects		04			02		02

Course	Course	Examination Scheme						
Code	Name	Theory Marks						
		Internal assessment		End	Term Work	Pract. /Oral	Total	
		Test1	Test 2	Avg.	Sem. Exam	Term work	Fract./Orar	Total
ITM401	Mini Project – 1 B for Python based automation projects					25	25	50

Course Objectives

- 1. To acquaint with the process of identifying the needs and converting it into the problem.
- 2. To familiarize the process of solving the problem in a group.
- 3. To acquaint with the process of applying basic engineering fundamentalsto attempt solutions to the problems.
- 4. To inculcate the process of self-learning and research.

Course Outcome: Learner will be able to...

- 1. Identify problems based on societal /research needs.
- 2. Apply Knowledge and skill to solve societal problems in a group.
- 3. Develop interpersonal skills to work as member of a group or leader.
- 4. Draw the proper inferences from available results through theoretical/ experimental/simulations.
- 5. Analyse the impact of solutions in societal and environmental context for sustainable development.
- 6. Use standard norms of engineering practices
- 7. Excel in written and oral communication.
- 8. Demonstrate capabilities of self-learning in a group, which leads to life long learning.
- 9. Demonstrate project management principles during project work.

Guidelines for Mini Project

- Students shall form a group of 3 to 4 students, while forming a group shall not be allowed less than three or more than four students, as it is a group activity.
- Students should do survey and identify needs, which shall be converted into problem statement for mini project in consultation with faculty supervisor/head of department/internal committee of faculties.
- Students hall submit implementation plan in the form of Gantt/PERT/CPM chart, which will cover weekly activity of mini project.
- A log book to be prepared by each group, wherein group can record weekly work progress, guide/supervisor can verify and record notes/comments.
- Faculty supervisor may give inputs to students during mini project activity;however, focus shall be on self-learning.

- Students in a group shall understand problem effectively, propose multiple solution and select best possible solution in consultation with guide/ supervisor.
- Students shall convert the best solution into working model using various components of their domain areas and demonstrate.
- The solution to be validated with proper justification and report to be compiled in standard format of University of Mumbai.
- With the focus on the self-learning, innovation, addressing societal problems and entrepreneurship quality development within the students through the Mini Projects, it is preferable that a single project of appropriate level and quality to be carried out in two semesters by all the groups of the students. i.e. Mini Project 1 in semester III and IV. Similarly, Mini Project 2 in semesters V and VI.
- However, based on the individual students or group capability, with the mentor's
 recommendations, if the proposed Mini Project adhering to the qualitative aspects mentioned above
 gets completed in odd semester, then that group can be allowed to work on the extension of the
 Mini Project with suitable improvements/modifications or a completely new project idea in even
 semester. This policy can be adopted on case by case basis.

Guidelines for Assessment of Mini Project: Term Work

- The review/ progress monitoring committee shall be constituted by head of departments of each institute. The progress of mini project to be evaluated on continuous basis, minimum two reviews in each semester.
- In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.
- Distribution of Term work marks for both semesters shall be as below;
 - o Marks awarded by guide/supervisor based on log book : 10
 - o Marks awarded by review committee

: 10

Quality of Project report

: 05

Review/progress monitoring committee may consider following points for assessment based on either one year or half year project as mentioned in general guidelines. One-year project:

- In first semester entire theoretical solution shall be ready, including components/system selection and cost analysis. Two reviews will be conducted based on presentation given by students group.
 - First shall be for finalisation of problem
 - Second shall be on finalisation of proposed solution of problem.
- In second semester expected work shall be procurement of component's/systems, building of
 working prototype, testing and validation of results based on work completed in an earlier
 semester.
 - First review is based on readiness of building working prototype to be conducted.
 - Second review shall be based on poster presentation cum demonstration of working model in last month of the said semester.

Half-year project:

- In this case in one semester students' group shall complete project in all aspects including,
 - o Identification of need/problem
 - o Proposed final solution
 - o Procurement of components/systems
 - o Building prototype and testing
- Two reviews will be conducted for continuous assessment,
 - First shall be for finalisation of problem and proposed solution
 - Second shall be for implementation and testing of solution.

Assessment criteria of Mini Project.

Mini Project shall be assessed based on following criteria;

- 1. Quality of survey/ need identification
- 2. Clarity of Problem definition based on need.
- 3. Innovativeness in solutions
- 4. Feasibility of proposed problem solutions and selection of best solution
- 5. Cost effectiveness
- 6. Societal impact
- 7. Innovativeness
- 8. Cost effectiveness and Societal impact
- 9. Full functioning of working model as per stated requirements
- 10. Effective use of skill sets
- 11. Effective use of standard engineering norms
- 12. Contribution of an individual's as member or leader
- 13. Clarity in written and oral communication
- In **one year, project**, first semester evaluation may be based on first six criteria's and remaining may be used for second semester evaluation of performance of students in mini project.
- In case of **half year project** all criteria's in generic may be considered for evaluation of performance of students in mini project.

Guidelines for Assessment of Mini Project Practical/Oral Examination:

- Report should be prepared as per the guidelines issued by the University of Mumbai.
- Mini Project shall be assessed through a presentation and demonstration of working model by the student project group to a panel of Internal and External Examiners preferably from industry or research organisations having experience of more than five years approved by head of Institution.
- Students shall be motivated to publish a paper based on the work in Conferences/students competitions.

Mini Project shall be assessed based on following points;

- 1. Quality of problem and Clarity
- 2. Innovativeness in solutions
- 3. Cost effectiveness and Societal impact
- 4. Full functioning of working model as per stated requirements
- 5. Effective use of skill sets
- 6. Effective use of standard engineering norms
- 7. Contribution of an individual's as member or leader
- 8. Clarity in written and oral communication