Item No.

UNIVERSITY OF MUMBAI

Bachelor of Engineering

in

Computer Engineering

Second Year with Effect from AY 2020-21

Third Year with Effect from AY 2021-22

Final Year with Effect from AY 2022-23

(REV-2019 'C' Scheme) from Academic Year 2019 - 20

Under

FACULTY OF SCIENCE & TECHNOLOGY

(As per AICTE guidelines with effect from the academic year 2019–2020)

Program Structure for Fourth Year Computer Engineering UNIVERSITY OF MUMBAI (With Effect from 2022-2023)

Semester VII

Course	Course Name		ning Sch tact Ho			Cre	edits Assi	gned	
Code	Course Name	Theo	PX7	Pract. Tut.	Т	heory	Pra	Pract.	
CSC701	Machine Learning	3				3			
CSC702	Big Data Analytics	3				3			3
CSDC 701X	Department Level Optional Course-3	3				3			3
CSDC 702X	Department Level Optional Course-4	3				3	1		3
ILO 701X	Institute Level Optional Course-1	3				3			3
CSL701	Machine Learning Lab			2		-	1		1
CSL702	Big Data Analytics Lab			2	1	/ 	1		1
CSDL 701X	Department Level Optional Course-3 Lab			2			1		1
CSDL 702X	Department Level Optional Course-4 Lab			2	C		1		1
CSP701	Major Project 1			6#			3		3
	Total	15		14		15	7		22
			Examination Scheme						
		hoory				D 4			
				Theo	ry			Pract. & oral	Total
Course Code	Course Name		nternal		End Sem Exam	Exam. Duration (in Hrs)			Total
	Course Name				End Sem	Duration			Total
	Course Name Machine Learning	As Test	Test	nt	End Sem	Duration			Total
Code	CX.	As Test 1	Test 2	Avg	End Sem Exam	Duration (in Hrs)	Work	& oral	
CSC701 CSC702 CSDC 701X	Machine Learning Big Data Analysis Department Level Optional Course-3	Test 1 20	Test 2	Avg 20	End Sem Exam	Duration (in Hrs)	Work	& oral	100
CSC701 CSC702 CSDC 701X CSDC 702X	Machine Learning Big Data Analysis Department Level Optional Course-3 Department Level Optional Course-4	Test 1 20 20	Test 2 20 20	Avg 20 20	End Sem Exam 80	Duration (in Hrs) 3 3	Work		100
CSC701 CSC702 CSDC 701X CSDC	Machine Learning Big Data Analysis Department Level Optional Course-3 Department Level	As Test 1 20 20 20	Test 2 20 20 20	Avg 20 20 20	End Sem Exam 80 80	Duration (in Hrs) 3 3 3	 		100 100 100
CSC701 CSC702 CSDC 701X CSDC 702X ILO	Machine Learning Big Data Analysis Department Level Optional Course-3 Department Level Optional Course-4 Institute Level Optional	As Test 1 20 20 20 20	Test 2 20 20 20 20	Avg 20 20 20 20	End Sem Exam 80 80 80	Duration (in Hrs) 3 3 3 3		 	100 100 100 100
CSC701 CSC702 CSDC 701X CSDC 702X ILO 701X CSL701 CSL702	Machine Learning Big Data Analysis Department Level Optional Course-3 Department Level Optional Course-4 Institute Level Optional Course-1 Machine Learning Lab Big Data Analytics Lab	As Test 1 20 20 20 20 20 20	Test 2 20 20 20 20 20	Avg 20 20 20 20 20	80 80 80 80	Duration (in Hrs) 3 3 3 3 3	 	 	100 100 100 100 100
CSC701 CSC702 CSDC 701X CSDC 702X ILO 701X CSL701 CSL702 CSDL 701X	Machine Learning Big Data Analysis Department Level Optional Course-3 Department Level Optional Course-4 Institute Level Optional Course-1 Machine Learning Lab Big Data Analytics Lab Department Level Optional Course-3 Lab	As Test 1 20 20 20 20 20	Test 2 20 20 20 20 20	Avg 20 20 20 20	80 80 80 80	3 3 3 3 		 25	100 100 100 100 100 50
CSC701 CSC702 CSDC 701X CSDC 702X ILO 701X CSL701 CSL702 CSDL	Machine Learning Big Data Analysis Department Level Optional Course-3 Department Level Optional Course-4 Institute Level Optional Course-1 Machine Learning Lab Big Data Analytics Lab Department Level	As Test 1 20 20 20 20 20	Test 2 20 20 20 20 20	Avg 20 20 20 20	80 80 80 80	3 3 3 3 			100 100 100 100 100 50 50
CSC701 CSC702 CSDC 701X CSDC 702X ILO 701X CSL701 CSL702 CSDL 701X CSDL	Machine Learning Big Data Analysis Department Level Optional Course-3 Department Level Optional Course-4 Institute Level Optional Course-1 Machine Learning Lab Big Data Analytics Lab Department Level Optional Course-3 Lab Department Level	As Test 1 20 20 20 20	Test 2 20 20 20 20	20 20 20 20	End Sem Exam	3 3 3 3			100 100 100 100 50 50 25

Program Structure for Computer Engineering

UNIVERSITY OF MUMBAI (With Effect from 2022-2023)

Department and Institute Optional Courses and Labs

Semester	Department/ Institute Optional Courses and Labs	Subject
	Department Optional Course -3	CSDC7011: Machine Vision CSDC7012: Quantum Computing CSDC7013: Natural Language Processing
	Department Optional Lab -3	CSDL7011: Machine Vision Lab CSDL7012: Quantum Computing Lab CSDL7013: Natural Language Processing Lab
	Department Optional Course -4	CSDC7021 : Augmented and Virtual Reality CSDC7022 : Block Chain CSDC7023 : Information Retrieval
VII	Department Optional Lab -4	CSDL7021 : Augmented and Virtual Reality Lab CSDL7022 : Block Chain Lab CSDL7023 : Information Retrieval Lab
	Institute level Optional Courses-I	ILO7011. Product Lifecycle Management ILO7012. Reliability Engineering ILO7013. Management Information System ILO7014. Design of Experiments ILO7015. Operation Research ILO7016. Cyber Security and Laws ILO7017. Disaster Management & Mitigation Measures ILO7018. Energy Audit and Management ILO7019. Development Engineering

Course Code:	Course Title	Credit
CSC701	Machine Learning	3

Prerequ	Prerequisite: Engineering Mathematics, Data Structures, Algorithms				
Course	Course Objectives:				
1	To introduce the basic concepts and techniques of Machine Learning.				
2	To acquire in depth understanding of various supervised and unsupervised algorithms				
3	To be able to apply various ensemble techniques for combining ML models.				
4	To demonstrate dimensionality reduction techniques.				
Course	Outcomes:				
1	To acquire fundamental knowledge of developing machine learning models.				
2	To select, apply and evaluate an appropriate machine learning model for the given				
3	To demonstrate ensemble techniques to combine predictions from different models.				
4	To demonstrate the dimensionality reduction techniques.				

Module		Content	Hrs
1		Introduction to Machine Learning	04
		Machine Learning, Types of Machine Learning, Issues in Machine	
	1.1	Learning, Application of Machine Learning, Steps in developing a	
		Machine Learning Application.	
	1.2	Training Error, Generalization error, Overfitting, Underfitting, Bias-	
	1.2	Variance trade-off.	
2		Learning with Regression and Trees	09
		Learning with Regression: Linear Regression, Multivariate Linear	
	2.1	Regression, Logistic Regression.	
	2.2	Learning with Trees: Decision Trees, Constructing Decision Trees using	
	2.2	Gini Index (Regression), Classification and Regression Trees (CART)	
		Performance Metrics: Confusion Matrix, [Kappa Statistics], Sensitivity,	
	2.3	Specificity, Precision, Recall, F-measure, ROC curve	
2			0.6
3		Ensemble Learning	06
	3.1	Understanding Ensembles, K-fold cross validation, Boosting, Stumping,	
		XGBoost	
	3.2	Bagging, Subagging, Random Forest, Comparison with Boosting,	
		Different ways to combine classifiers	
4		Learning with Classification	08
		Support Vector Machine	
	4.1	Constrained Optimization, Optimal decision boundary, Margins and	
		support vectors, SVM as constrained optimization problem, Quadratic	
		Programming, SVM for linear and nonlinear classification, Basics of	

		Kernel trick.	
	4.2	Support Vector Regression, Multiclass Classification	
5		Learning with Clustering	07
	5.1	Introduction to clustering with overview of distance metrics and major	
	3.1	clustering approaches.	
		Graph Based Clustering: Clustering with minimal spanning tree	
	5.2	Model based Clustering: Expectation Maximization Algorithm,	
		Density Based Clustering: DBSCAN	
6		Dimensionality Reduction	05
	6.1	Dimensionality Reduction Techniques, Principal Component Analysis,	
	0.1	Linear Discriminant Analysis, Singular Valued Decomposition.	
	•	Total	39

Textb	ooks:				
1	Peter Harrington, "Machine Learning n Action", DreamTech Press				
2	Ethem Alpaydın, "Introduction to Machine Learning", MIT Press				
3	Tom M. Mitchell, "Machine Learning" McGraw Hill				
4	Stephen Marsland, "Machine Learning An Algorithmic Perspective", CRC Press				
Refer	ences:				
1	Han Kamber, —Data Mining Concepts and Techniques , Morgan Kaufmann Publishers				
2	Margaret. H. Dunham, —Data Mining Introductory and Advanced Topics, Pearson Education				
3	Kevin P. Murphy, Machine Learning — A Probabilistic Perspective				
4	Samir Roy and Chakraborty, —Introduction to soft computing, Pearson Edition.				
5	Richard Duda, Peter Hart, David G. Stork, "Pattern Classification", Second Edition, Wiley Publications.				
Asses	sment:				
Intern	al Assessment:				
when	sment consists of two class tests of 20 marks each. The first class test is to be conducted approximately 40% syllabus is completed and the second class test when an additional 40% ous is completed. Duration of each test shall be one hour.				
End S	End Semester Theory Examination:				
1	Question paper will comprise a total of six questions.				
2	All question carries equal marks				
3	Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)				
4	Only Four questions need to be solved.				

5	In question paper weightage of each module will be proportional to number of respective
]	lecture hours as mentioned in the syllabus.

Usefu	Useful Digital Links				
1	Data sets for Machine Learning algorithms: https://www.kaggle.com/datasets				
2	Machine Learning repository- https://archive.ics.uci.edu/ml/index.php				
3	Machine Learning from Coursera				
4	https://towardsdatascience.com/machine-learning/home				
5	https://onlinecourses.nptel.ac.in/noc21_cs85/preview				

Course Code	Course Name	Credit
CSC702	Big Data Analysis	03

Prerequisite: Database, Data mining.					
Cou	Course Objectives: The course aims:				
1	To provide an overview of the big data platforms, its use cases and Hadoop ecosystem.				
2	To introduce programming skills to build simple solutions using big data technologies such as MapReduce, Scripting for No SQL and R				
3	To learn the fundamental techniques and principles in achieving big data analytics with scalability and streaming capability.				
4	To enable students to have skills that will help them to solve complex real-world problems for decision support.				
Cou	rse Outcomes:				
1	Understand the building blocks of Big Data Analytics.				
2	Apply fundamental enabling techniques like Hadoop and MapReduce in solving real world problems.				
3	Understand different NoSQL systems and how it handles big data.				
4	Apply advanced techniques for emerging applications like stream analytics.				
5	Achieve adequate perspectives of big data analytics in various applications like recommender systems, social media applications, etc.				
6	Apply statistical computing techniques and graphics for analyzing big data.				

Module		Detailed Content	Hours		
1		Introduction to Big Data and Hadoop	2		
	1.1	Introduction to Big Data - Big Data characteristics and Types of Big Data			
	1.2	Traditional vs. Big Data business approach			
,	1.3	Case Study of Big Data Solutions			
	1.4	Concept of Hadoop, Core Hadoop Components; Hadoop Ecosystem			
2		Hadoop HDFS and MapReduce	8		
	2.1	Distributed File Systems: Physical Organization of Compute Nodes, Large-Scale File-System Organization.			
	2.2	MapReduce: The Map Tasks, Grouping by Key, The Reduce Tasks, Combiners, Details of MapReduce Execution, Coping With Node Failures.			
	2.3	Algorithms Using MapReduce: Matrix-Vector Multiplication by MapReduce, Relational-Algebra Operations, Computing Selections by MapReduce, Computing Projections by MapReduce, Union, Intersection, and Difference by MapReduce			

	2.4	Hadoop Limitations	
3		NoSQL	10
3		NOSQL	10
	3.1	Introduction to NoSQL, NoSQL Business Drivers	
	3.2	NoSQL Data Architecture Patterns: Key-value stores, Graph stores, Column family (Bigtable)stores, Document stores, Variations of NoSQL architectural patterns, NoSQL Case Study	
	3.3	NoSQL solution for big data, Understanding the types of big data problems; Analyzing big data with a shared-nothing architecture; Choosing distribution models: master-slave versus peer-to-peer; NoSQL systems to handle big data problems.	
4		Mining Data Streams	11
	4.1	The Stream Data Model: A Data-Stream-Management System, Examples of Stream Sources, Stream Queries, Issues in Stream Processing.	
	4.2	Sampling Data techniques in a Stream	
	4.3	Filtering Streams: Bloom Filter with Analysis.	
	4.4	Counting Distinct Elements in a Stream, Count- Distinct Problem, Flajolet-Martin Algorithm, Combining Estimates, Space Requirements	
	4.5	Counting Ones in a Window: The Cost of Exact Counts, The Datar-Gionis-Indyk-Motwani Algorithm, Query Answering in the DGIM Algorithm, Decaying Windows.	
5		Real-Time Big Data Models	4
	5.1	A Model for Recommendation Systems, Content-Based Recommendations, Collaborative Filtering	
	5.2	Case Study: Product Recommendation	
	5.3	Social Networks as Graphs, Clustering of Social-Network Graphs, Direct Discovery of Communities in a social graph	
6		Data Analytics with R	4
	6.1	Exploring Basic features of R, Exploring RGUI, Exploring RStudio, Handling Basic Expressions in R, Variables in R, Working with Vectors, Storing and Calculating Values in R, Creating and using Objects, Interacting with users, Handling data in R workspace, Executing Scripts, Creating Plots, Accessing help and documentation in R	
	6.2	Reading datasets and Exporting data from R, Manipulating and Processing Data in R, Using functions instead of script, built-in functions in R	
	6.3	Data Visualization: Types, Applications	

Textboo	Textbooks:	
1	Cre Anand Rajaraman and Jeff Ullman —Mining of Massive Datasetsl, Cambridge	
	UniversityPress	
2	Alex Holmes —Hadoop in Practicel, Manning Press, Dreamtech Press.	
3	Dan Mcary and Ann Kelly —Making Sense of NoSQL – A guide for managers and the	
	rest of us, Manning Press.	
4	DT Editorial Services, "Big Data Black Book", Dreamtech Press	
5	EMC Education Services,"Data Science and Big Data Analytics",Wiley	

Refere	nces:
1	Bill Franks, —Taming The Big Data Tidal Wave: Finding Opportunities In HugeData
	StreamsWithAdvancedAnalyticsl,Wiley
2	Chuck Lam, —Hadoop in Action, Dreamtech Press
3	Jared Dean, —Big Data, Data Mining, and Machine Learning: Value Creation for
	Business Leaders and Practitioners, Wiley India Private Limited, 2014.
4	Jiawei Han and Micheline Kamber, —Data Mining: Concepts and Techniques, Morgan
	Kaufmann Publishers, 3rd ed, 2010.
5	Lior Rokach and Oded Maimon, —Data Mining and Knowledge Discovery
	Handbookl, Springer, 2nd edition, 2010.
6	Ronen Feldman and James Sanger, —The Text Mining Handbook: Advanced
	Approaches in Analyzing Unstructured Datal, Cambridge University Press, 2006.
7	Vojislav Kecman, —Learning and Soft Computingl, MITPress, 2010.

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first-class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

- 1 Question paper will consist of 6 questions, each carrying 20 marks.
- 2 The students need to solve a total of 4 questions.
- 3 Question No.1 will be compulsory and based on the entire syllabus.
- 4 Remaining question (Q.2 to Q.6) will be selected from all the modules.

Useful Links		
1	https://nptel.ac.in/courses/106104189	
2	https://www.coursera.org/specializations/big-data#courses	
3	https://www.digimat.in/nptel/courses/video/106106169/L01.html	
4	https://www.coursera.org/learn/nosql-databases#syllabus	
5	https://www.coursera.org/learn/basic-recommender-systems#syllabus	

Course Code	Course Name	Credit
CSDC7011	Machine Vision	03

Pre-req	Pre-requisite: Computer Graphics		
Course (Objectives: The course aims:		
1	To understand the need and significance Machine Vision		
2	To explore basics of image processing		
3	To explore the components of Machine Vision System		
4	To develop application using machine Vision		
5	To study transformation, interpolation, filters.		
Course (Dutcomes: Learners will be able to		
1	Elaborate the components of Machine Vision Application		
2	Perform image ,video preprocessing operations		
3	Explain various transformations, interpolation.		
4	Elaborate motion tracking in video.		
5	Analyze and Implement appropriate filtering techniques for a given problem.		
6	Develop applications based on machine vision.		

Module	Detailed Content	Hours
1	Introduction to Machine Vision	4
	Computer and Human Vision Systems., The Human Eye,	
	Computer versus Human Vision Systems, Evolution of	
	Computer Vision, Computer/Machine Vision and Image	
	Processing, Applications of Computer Vision	
2	Digital Image Fundamentals	8
	Digital Image, Monochrome and Color Images, Image Brightness	
	and Contrast., 2D, 3D, and 4D Images, Digital Image	
	Representation, Digital Image File Formats, Fundamental Image	
	Operations, Points, Edges, and Vertices, Point Operations,	
	Thresholding ,Brightness, Geometric Transformations , Spatial	
	Transformation, Affine Transformation, Image Interpolation	
	,Nearest-Neighbor Interpolation ,Bilinear Interpolation , Bi-cubic	
	Interpolation ,Fundamental Steps in Digital Image Processing.	
3	Machine Vision and System Components	8
	Machine Vision System, Machine Vision Camera: CCD and	
	CMOS Image Sensors, TDI Sensor, Camera Type - Area Scan	
	Cameras, Line Scan Cameras, Smart Cameras, Camera Lens-	
	Resolution, Contrast and Sharpness, Lenses and their parameters:	
	Types of Lenses, Lens Mounts, Lens Selection Examples-Field of	

		View Much larger than Camera sensor size or Smaller or close to Camera Sensor size, Machine Vision Lighting: Lighting: Light Sources in Machine Vision, Illumination Techniques-Backlighting, Front Lighting, Diffused Lighting, Oblique Lighting, Dark Field Lighting, Infrared and Ultraviolet Light, Filters, Machine Vision Software, Machine Vision Automation, Integration of Machine Vision Components	
4		Digital Image Processing for Machine Vision Applications	10
		Preprocessing., Image Filtering, Normalized Box Filter Gaussian Filter Bilateral Filter, Comparison of Filter Techniques, Sub sampling/Scaling Histogram, Image Segmentation, Threshold-Based Segmentation Edge-Based Segmentation First-Order Derivative Edge Detection. Second-Order Derivative Operators, Comparison of Edge Detection Techniques, Region-Based Segmentation Region Growing Methods, Region Split and Merge Method, Morphological Image Processing: Dilation, Erosion, Opening, Closing, Hit-or-Miss transformation, Object Recognition. Template Matching. Blob Analysis	
5		Motion Analysis	4
		Differential motion Analysis, Optical Flow, Analysis based on correspondence of interest points, Detection of specific motion Patterns, Video Tracking	
6		Emerging Trends in Machine Vision	5
	6.1	History of Industrial Revolution(s), Machine Vision and Industry 4.0, Emerging Vision Trends in Manufacturing, 3D Imaging, Emerging Vision Trends in Manufacturing,	
	6.2	Applications in Machine/ Computer Vision: Face detection, face recognition, eigen faces, car on roads	

	_ 2 0 '		
Textb	Textbooks:		
1.	Sheila Anand and L.Priya, "A Guide for Machine Vision in Quality Control", Taylor &		
	Francis Inc, Imprint CRC Press Inc, Dec 2019		
2.	Rafael C. Gonzalez and Richard E. Woods, "Digital Image Processing", Pearson		
3.	Carsten Stegar, Markus Ulrich, and Christian Wiedemann, "Machine Vision		
	Algorithms and Applications", Second completely Revised and Enlarged Edition		
4.	Milan Sonka, Vaclav Hlavac, Roger Boyle, "Image Processing Analysis and Machine		
	Vision", Second Edition, Cengage Learning.		
Refer	ences:		

1.	Chiranji Lal Chowdhary, Mamoun Alazab, Ankit Chaudhary, SaqibHakak and Thippa Reddy Gadekallu, "Computer Vision and Recognition Systems Using Machine and Deep Learning Approaches, Fundamentals, technologies and applications", IET COMPUTING SERIES 42
2	Joe Minichino Joseph Howse ,"Learning OpenCV 3 Computer Vision with Python", Second Edition, Packt Publishing Ltd.
3.	Alexander Hornberg,, "Handbook of Machine and Computer Vision The Guide for Developers and Users,

Assessme	Assessment:		
Internal	Assessment:		
Assessme	ent consists of two class tests of 20 marks each. The first-class test is to be		
conducte	d when approx. 40% syllabus is completed and second class test when		
additiona	additional 40% syllabus is completed. Duration of each test shall be one hour.		
End Sem	End Semester Theory Examination:		
1	Question paper will consist of 6 questions, each carrying 20 marks.		
2	The students need to solve a total of 4 questions.		
3	Question No.1 will be compulsory and based on the entire syllabus.		
4	Remaining question (Q.2 to Q.6) will be selected from all the modules.		

Useful L	Useful Links	
1	https://nptel.ac.in/courses/108103174	
2	https://www.coursera.org/learn/introduction-computer-vision-watson-opencv	
3	https://www.udacity.com/course/introduction-to-computer-visionud810	
4	https://onlinecourses.nptel.ac.in/noc21_ee23/preview	

Course Code	Course Title	Credit
CSDC7012	Quantum Computing	3

Prerequisit	e: Eng	ineering Mathematics, Data Structures and Algorithm, Python Programm	ing
Course Ol	ojective	es:	
1	To u	nderstand basics of quantum computing	
2	To u	nderstand mathematics required for quantum computing	
3	To u	nderstand building blocks of quantum computing and design algorithms	
4	To u	nderstand quantum hardware principles and tools for quantum computing	ıg.
Course Or	ıtcome	s: After successful completion of the course student will be able to	
1	Unde	erstand basic concepts of quantum computing	
2	Illust	rate building blocks of quantum computing through architecture and	
		ramming models.	
3	Appr	aise various mathematical models required for quantum computing	
4	Discu	uss various quantum hardware building principles.	
5		ify the various quantum algorithms	
6	Desc	ribe usage of tools for quantum computing.	
Module		Content	Hrs
1.0		Introduction to Quantum Computing	7
	1.1	Motivation for studying Quantum Computing	
		Origin of Quantum Computing	
		Quantum Computer vs. Classical Computer	
		Introduction to Quantum mechanics	
		Overview of major concepts in Quantum Computing	
	1.2	Qubits and multi-qubits states	
		Bloch Sphere representation	
		Quantum Superposition	
		Quantum Entanglement	
		Major players in the industry (IBM, Microsoft, Rigetti, D-Wave	
		etc.)	
2.0	7	Mathematical Foundations for Quantum Computing	05
	2.1	Matrix Algebra: basis vectors and orthogonality, inner product and	
		Hilbert spaces, matrices and tensors, unitary operators and	
		projectors, Dirac notation, Eigen values and Eigen vectors.	
3.0		Building Blocks for Quantum Program	08

	1		
	3.1	Architecture of a Quantum Computing platform	
		Details of q-bit system of information representation:	
		Block Sphere	
		Multi-qubits States Quantum superposition of qubits (valid and	
		invalid superposition)	
		Quantum Entanglement	
		Useful states from quantum algorithmic perceptive e.g. Bell State	
		Operation on qubits: Measuring and transforming using gates.	
		Quantum Logic gates and Circuit	
		No Cloning Theorem and Teleportation	
	3.2	Programming model for a Quantum Computing Program	
		Steps performed on classical computer	
		Steps performed on Quantum Computer	
		Moving data between bits and qubits.	
4.0		Quantum Algorithms and Error correction	06
		4	
	4.1	Quantum Algorithms, Shor's Algorithm, Grover's Algorithm.	
		Deutsch's Algorithm, Deutsch -Jozsa Algorithm	
		Deutsen s riigoritiini, Deutsen sozsa riigoritiini	
		Quantum error correction using repetition codes	
	4.2		
		3 qubit codes, Shor's 9 qubit error correction Code	
5.0		Oventum Handyvene	10
5.0		Quantum Hardware	10
	5.1	Ion Trap Qubits ,The DiVincenzo Criteria , Lagrangian and	
	3.1		
		Hamiltonian Dynamics in a Nutshell: Dynamics of a Translating	
	5.2	Rotor	
		Quantum Mechanics of a Free Rotor: A Poor Person's Atomic	
	5.3	Model: Rotor Dynamics and the Hadamard Gate, Two-Qubit Gates	
		The Cirac-Zoller Mechanism: Quantum Theory of Simple	
		Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light-	
		Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light-	
	5.4	Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light-Induced Rotor-Phonon Interactions, Trapped Ion Qubits, Mølmer-Sørenson Coupling.	
	5.4	Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light-Induced Rotor-Phonon Interactions, Trapped Ion Qubits, Mølmer-Sørenson Coupling Cavity Quantum Electrodynamics (cQED): Eigenstates of the	
	5.4	Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light-Induced Rotor-Phonon Interactions, Trapped Ion Qubits, Mølmer-Sørenson Coupling Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes-Cummings Hamiltonian	
	5.4	Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light-Induced Rotor-Phonon Interactions, Trapped Ion Qubits, Mølmer-Sørenson Coupling. Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes-Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms,	
	5.4	Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light-Induced Rotor-Phonon Interactions, Trapped Ion Qubits, Mølmer-Sørenson Coupling. Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes-Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits	
	5.4	Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light-Induced Rotor-Phonon Interactions, Trapped Ion Qubits, Mølmer-Sørenson Coupling. Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes-Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins:	
	5.4	Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light-Induced Rotor-Phonon Interactions, Trapped Ion Qubits, Mølmer-Sørenson Coupling. Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes-Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in	
	5.4	Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light-Induced Rotor-Phonon Interactions, Trapped Ion Qubits, Mølmer-Sørenson Coupling. Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes-Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate.	
6.0	5.4	Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light-Induced Rotor-Phonon Interactions, Trapped Ion Qubits, Mølmer-Sørenson Coupling. Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes-Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in	03
6.0	J'	Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light-Induced Rotor-Phonon Interactions, Trapped Ion Qubits, Mølmer-Sørenson Coupling. Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes-Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. OSS Toolkits for implementing Quantum program	03
6.0	5.4 6.1	Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light-Induced Rotor-Phonon Interactions, Trapped Ion Qubits, Mølmer-Sørenson Coupling. Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes-Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. OSS Toolkits for implementing Quantum program IBM quantum experience	03
6.0	J'	Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light-Induced Rotor-Phonon Interactions, Trapped Ion Qubits, Mølmer-Sørenson Coupling. Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes-Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. OSS Toolkits for implementing Quantum program	03
6.0	J'	Harmonic Motion, A Phonon-Qubit Pair Hamiltonian, Light-Induced Rotor-Phonon Interactions, Trapped Ion Qubits, Mølmer-Sørenson Coupling. Cavity Quantum Electrodynamics (cQED): Eigenstates of the Jaynes-Cummings Hamiltonian Circuit QED (cirQED): Quantum LC Circuits, Artificial Atoms, Superconducting Qubits Quantum computing with spins: Quantum inverter realized with two exchange coupled spins in quantum dots, A 2-qubit spintronic universal quantum gate. OSS Toolkits for implementing Quantum program IBM quantum experience	03

Text	Textbooks:		
1	Michael A. Nielsen, "Quantum Computation and Quantum Information", Cambridge		
	University Press.		
2	David McMahon, "Quantum Computing Explained", Wiley ,2008		
3	Qiskit textbook https://qiskit.org/textbook-beta/		
4	Vladimir Silva, Practical Quantum Computing for Developers,2018		

Refe	rences:
1	Bernard Zygelman, A First Introduction to Quantum Computing and Information, 2018
2	Supriyo Bandopadhyay and Marc Cahy, "Introduction to Spintronics", CRC Press, 2008
3	The Second Quantum Revolution: From Entanglement to Quantum Computing and Other Super-Technologies, Lars Jaeger
4	La Guardia, Giuliano Gladioli "Quantum Error correction codes" Springer, 2021

Digital References:

https://onlinecourses.nptel.ac.in/noc21_cs103/preview

https://www.coursera.org/courses?query=quantum%20computing

https://www.cl.cam.ac.uk/teaching/1617/QuantComp/

Assessment:

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

	1	Question paper	will comprise of t	otal six questions.
--	---	----------------	--------------------	---------------------

- 2 All question carries equal marks
- Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4 Only Four question need to be solved.
- In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

Course Code	Course Name	Credit
CSDC7013	Natural Language Processing	03

Pre-r	equisi	ite: Theory of Computer Science, System Programming & Compiler Construction		
Cours	se Ob	jectives: The course aims		
1		To define natural language processing and to learn various stages of natural language processing.		
2		describe basic concepts and algorithmic description of the main language levels: rphology, Syntax, Semantics, and Pragmatics & Discourse analysis.		
3	То	design and implement various language models and POS tagging techniques.		
4	То	To design and learn NLP applications such as Information Extraction, Question answering.		
5	То	design and implement applications based on natural language processing.		
Cour	se Ou	tcomes:Students will be able		
1		To describe the field of natural language processing.		
2		To design language model for word level analysis for text processing.		
3		To design various POS tagging techniques and parsers.		
4		To design, implement and test algorithms for semantic and pragmatic analysis.		
5		To formulate the discourse segmentation and anaphora resolution.		
6		To apply NLP techniques to design real world NLP applications.		

Module		Detailed Content	Hours
1	1.1	Introduction to NLP	3
		Origin & History of NLP; Language, Knowledge and Grammar in	
		language processing; Stages in NLP; Ambiguities and its types in	
		English and Indian Regional Llanguages; Challenges of	
		NLP;Applications of NLP	
	1.2	Self-Learning topics: Variety types of tools for regional languages pre-processing and other functionalities	
2	2.1	Word Level Analysis	9
		Basic Terms: Tokenization, Stemming, Lemmatization; Survey of	
		English Morphology, Inflectional Morphology, Derivational	
		Morphology; Regular expression with types;	
		Morphological Models: Dictionary lookup, finite state morphology;	
		Morphological parsing with FST (Finite State Transducer);Lexicon	
		free FST Porter Stemmer algorithm; Grams and its variation: Bigram,	
		Trigram; Simple (Unsmoothed) N-grams;	
		N-gram Sensitivity to the Training Corpus; Unknown Words: Open	
		versus closed vocabulary tasks; Evaluating N-grams: Perplexity;	

7 2

		Smoothing: Laplace Smoothing, Good-Turing Discounting;	
		Self-Learning topics: Noisy channel models, various edit distance,	
	2.2	Advance Issues in Language Modelling	
3	3.1	Syntax analysis	10
		Part-Of-Speech tagging(POS); Tag set for English (Upenn Treebank);	
		Difficulties /Challenges in POS tagging; Rule-based, Stochastic and	
		Transformation-based tagging; Generative Model: Hidden Markov	
		Model (HMM Viterbi) for POS tagging;	
		Issues in HMM POS tagging; Discriminative Model: Maximum	
		Entropy model, Conditional random Field (CRF);Parsers: Top down	
		and Bottom up; Modelling constituency; Bottom Up Parser: CYK,	
		PCFG (Probabilistic Context Free Grammar), Shift Reduce Parser; Top	
		Down Parser: Early Parser, Predictive Parser	
		Self-Learning topics: Evaluating parsers, Parsers based language	
	3.2	modelling, Regional languages POS tree banks	
4	4.1	Semantic Analysis	7
•	1.1	Introduction, meaning representation; Lexical Semantics; Corpus	
		study; Study of Various language dictionaries like WorldNet, Babelnet;	
		Relations among lexemes & their senses –Homonymy, Polysemy,	
		Synonymy, Hyponymy; Semantic Ambiguity;	
		Word Sense Disambiguation (WSD); Knowledge based approach(
		Lesk's Algorithm), Supervised (Naïve Bayes, Decision	
		List),Introduction to Semi-supervised method (Yarowsky)	
		Unsupervised (Hyperlex)	
	4.2	Self-Learning topics: Dictionaries for regional languages, Distributional Semantics, Topic Models	
5	5.1	Pragmatic & Discourse Processing	5
		Discourse: Reference Resolution, Reference Phenomena, Syntactic &	
		Semantic constraint on coherence; Anaphora Resolution using Hobbs	
		and Cantering Algorithm	
	5.2	Self-Learning topics: Discourse segmentation, Conference resolution	
6	6.1	Applications of NLP	5
		Case studies on (preferable in regional language):Machine	
		translation; Text Summarization; Sentiment analysis; Information	
		retrieval; Question Answering system	
	6.2	Self-Learning topics: Applications based on Deep Neural	
	6.2	Network with NLP such as LSTM network, Recurrent Neural network etc.	
		HELWOIK CIC.	

Textbo	oks:
1	Daniel Jurafsky, James H. and Martin, Speech and Language Processing, Second Edition,
	Prentice Hall, 2008.
2	Christopher D.Manning and HinrichSchutze, Foundations of Statistical Natural Language
	Processing, MIT Press, 1999.
Refe	erences:
1	Siddiqui and Tiwary U.S., Natural Language Processing and Information Retrieval, Oxford
	University Press, 2008.
2	Daniel M Bikel and ImedZitouni — Multilingual natural language processing applications:

	from theory to practice, IBM Press, 2013.
3	Alexander Clark, Chris Fox, Shalom Lappin — The Handbook of Computational
	Linguistics and Natural Language Processing, John Wiley and Sons, 2012.
4	Nitin Indurkhya and Fred J. Damerau, —Handbook of Natural Language Processing,
	Second Edition, Chapman and Hall/CRC Press, 2010.
5	Niel J le Roux and SugnetLubbe, A step by step tutorial: An introduction into R
	application and programming.
6	Steven Bird, Ewan Klein and Edward Loper, Natural language processing with Python:
	analyzing text with the natural language toolkit, O'Reilly Media, 2009.

Digital References :				
1 http://www.cse.iitb.ac.in/~cs626-449				
2	2 http://cse24-iiith.virtual-labs.ac.in/#			
3.	https://nptel.ac.in/courses/106105158			

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first-class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

- 1 Question paper will consist of 6 questions, each carrying 20 marks.
- 2 The students need to solve a total of 4 questions.
- 3 Question No.1 will be compulsory and based on the entire syllabus.
- 4 Remaining question (Q.2 to Q.6) will be selected from all the modules.

 Course Code
 Course Name
 Credit

 CSDC7021
 Augmented and Virtual Reality
 03

Prere	Prerequisite: Computer Graphics				
Cours	se Objectives: The course aims:				
1	To understand the need and significance of Virtual Reality.				
2	To explore the concepts of Virtual reality and develop 3D virtual environments.				
3	To understand the technical and engineering aspects of virtual reality systems.				
4	To analyze various techniques for applying virtual reality.				
5	To provide a foundation to the fast growing field of AR and make the students aware of the				
	various AR devices.				
Cours	se Outcomes: Learners will be able to				
1:	Describe how VR systems work and list the applications of VR				
2:	Elaborate geometric presentation of the virtual world and its operations.				
3:	Explain the concepts of motion and tracking in VR systems.				
4:	Design and implementation of the hardware that enables VR systems tobe built.				
5:	Describe how AR systems work and analyze the hardware requirement of AR				
6:	Analyze and understand the working of various state of the art AR devices.				

Module	Detailed Content	Hours
1	Introduction to Virtual Reality	5
	What is virtual reality? ,The beginnings of VR , VR paradigms ,	
	Collaboration, Virtual reality systems, Representation, User interaction	
2	The Geometry of Virtual Worlds	6
	Geometric Models, Changing Position and Orientation, Axis-Angle	
	Representations of Rotation, Viewing Transformations, Chaining the	
	Transformations	
3	Motion in Real and Virtual Worlds	6
	Velocities and Accelerations, The Vestibular System, Physics in the Virtual	
	World, Mismatched Motion and Vection	
4	Applying Virtual Reality	7
	Virtual reality: the medium, Form and genre, What makes an application a	
	good candidate for VR, Promising application fields, Demonstrated benefits	
	of virtual reality, More recent trends in virtual reality application	
	development, A framework for VR application development	_
5	Augmented Reality	8
	Terminology, Simple augmented reality, Augmented reality as an emerging	
	technology, Augmented reality applications, Marker detection, Marker pose,	
	Marker types and identification: Template markers, 2D bar-code markers,	
	Imperceptible markers: Image markers, Infrared markers, Miniature markers,	
	Discussion on marker use, General marker detection application	
6	AR Development & Applications	
		1

User interfaces, Avoiding physical contacts, Practical experiences with
head-mounted displays, Authoring and dynamic content, AR applications
and future visions, How to design an AR application ,Technology adoption
and acceptance, Where to use augmented reality

Text	Textbooks:				
1	Virtual Reality, Steven M. LaValle, Cambridge University Press, 2016				
2	Understanding Virtual Reality: Interface, Application and Design, William R Sherman and				
	Alan B Craig, (The Morgan Kaufmann Series in Computer Graphics)". Morgan Kaufmann				
	Publishers, San Francisco, CA, 2002				
3	Developing Virtual Reality Applications: Foundations of Effective Design, Alan B				
	Craig, William R Sherman and Jeffrey D Will, Morgan Kaufmann, 2009.				
4	Theory and applications of marker-based augmented reality SanniSiltanen				
Refe	erences:				
1	AR Game Development, 1st Edition, Allan Fowler, A press Publications, 2018, ISBN 978-				
	1484236178				
2	Augmented Reality: Principles & Practice by Schmalstieg / Hollerer, Pearson Education				
	India;				
	First edition (12 October 2016), ISBN-10: 9332578494				
3	Learning Virtual Reality, Tony Parisi,O'Reilly Media, Inc., 2015, ISBN- 9781491922835				

Digital Useful Links		
1	https://freevideolectures.com/course/3693/virtual-reality	
2	https://www.vrlabacademy.com/	
3	https://arvr.google.com/ar/	
4	https://konterball.com/	

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first-class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

1 Question paper will consist of 6 questions, each carrying 20 marks.		Question paper will consist of 6 questions, each carrying 20 marks.	
	2	The students need to solve a total of 4 questions.	
	3 Question No.1 will be compulsory and based on the entire syllabus.		
4 I		Remaining question (Q.2 to Q.6) will be selected from all the modules.	

Course Code:	Course Title	Credit
CSDC7022	Blockchain	3

Pr	Prerequisite: Cryptography and System Security		
Co	Course Objectives:		
1	Understand blockchain platforms and its terminologies.		
2	Understand the use of cryptography required for blockchain.		
3	Understand smart contracts, wallets, and consensus protocols.		
4	Design and develop blockchain applications		
Co	ourse Outcomes:		
1	Explain blockchain concepts.		
2	Apply cryptographic hash required for blockchain.		
3	Apply the concepts of smart contracts for an application.		
4	Design a public blockchain using Ethereum.		
5	Design a private blockchain using Hyperledger.		
6	Use different types of tools for blockchain applications.		

٨.

Module		Content	Hrs
1		Introduction to Blockchain	6
	1.1	What is a blockchain, Origin of blockchain (cryptographically secure	
		hash functions), Foundation of blockchain: Merkle trees	
	1.2	Components of blockchain, Block in blockchain, Types: Public,	
		Private, and Consortium, Consensus Protocol, Limitations and	
		Challenges of blockchain	
2		Cryptocurrency	6
	2.1	Cryptocurrency: Bitcoin, Altcoin, and Tokens (Utility and Security),	
		Cryptocurrency wallets: Hot and cold wallets, Cryptocurrency usage,	
		Transactions in Blockchain, UTXO and double spending problem	
	2.2	Bitcoin blockchain: Consensus in Bitcoin, Proof-of-Work (PoW),	
		Proof-of-Burn (PoB), Proof-of-Stake (PoS), and Proof-of-Elapsed	
		Time (PoET), Life of a miner, Mining difficulty, Mining pool and its	
	y	methods	
3		Programming for Blockchain	8
	3.1	Introduction to Smart Contracts, Types of Smart Contracts, Structure	
		of a Smart Contract, Smart Contract Approaches, Limitations of	
		Smart Contracts	
	3.2	Introduction to Programming: Solidity Programming - Basics,	
		functions, Visibility and Activity Qualifiers, Address and Address	
		Payable, Bytes and Enums, Arrays-Fixed and Dynamic Arrays,	
		Special Arrays-Bytes and strings, Struct, Mapping, Inheritance, Error	
		handling	
	3.3	Case Study - Voting Contract App, Preparing for smart contract	
		development	

4		Public Blockchain	8
		Introduction to Public Blockchain, Ethereum and its Components,	
		Mining in Ethereum, Ethereum Virtual Machine (EVM), Transaction,	
		Accounts, Architecture and Workflow, Comparison between Bitcoin	
		and Ethereum	
		Types of test-networks used in Ethereum, Transferring Ethers using	
		Metamask, Mist Wallet, Ethereum frameworks, Case study of	
		Ganache for Ethereum blockchain. Exploring etherscan.io and ether	
		block structure	
5		Private Blockchain	8
	5.1	Introduction, Key characteristics, Need of Private Blockchain, Smart	
		Contract in a Private Environment, State Machine Replication,	
		Consensus Algorithms for Private Blockchain - PAXOS and RAFT,	
		Byzantine Faults: Byzantine Fault Tolerant (BFT) and Practical BFT	
	5.2	Introduction to Hyperledger, Tools and Frameworks, Hyperledger	
		Fabric, Comparison between Hyperledger Fabric & Other	
		Technologies	
	5.3	Hyperledger Fabric Architecture, Components of Hyperledger Fabric:	
		MSP, Chain Codes, Transaction Flow, Working of Hyperledger	
		Fabric, Creating Hyperledger Network, Case Study of Supply Chain	
		Management using Hyperledger	
6		Tools and Applications of Blockchain	3
		Corda, Ripple, Quorum and other Emerging Blockchain Platforms,	
		Blockchain in DeFi: Case Study on any of the Blockchain Platforms.	

Te	xtbooks:		
1	Blockchain Technology, Chandramouli Subramanian, Asha A. George, Abhillash K. A and		
	Meena Karthikeyen, Universities Press.		
2	Mastering Ethereum, Building Smart Contract and Dapps, Andreas M. Antonopoulos Dr.		
	Gavin Wood, O'reilly.		
3	Imran Bashir, Mastering Blockchain: A deep dive into distributed ledgers, consensus		
	protocols, smart contracts, DApps, cryptocurrencies, Ethereum, and more, 3rd Edition, Packt		
	Publishing		
Re	ferences:		
1	Blockchain for Beginners, Yathish R and Tejaswini N, SPD		
2	Blockchain Basics, A non Technical Introduction in 25 Steps, Daniel Drescher, Apress.		
3	Blockchain with Hyperledger Fabric, Luc Desrosiers, Nitin Gaur, Salman A. Baset,		
	Venkatraman Ramakrishna, Packt Publishing		

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

En	End Semester Theory Examination:			
1	Question paper will comprise a total of six questions.			
2	All question carries equal marks			
3	Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then			
	part (b) will be from any module other than module 3)			
4	Only Four question need to be solved.			
5	In question paper weightage of each module will be proportional to the number of respective			
	lecture hours as mention in the syllabus.			

Di	gital Useful Links
1	Blockchain By Example, Bellaj Badr, Richard Horrocks, Xun (Brian) Wu, November 2018,
	Implement decentralized blockchain applications to build scalable Dapps.
2	Blockchain for Business, https://www.ibm.com/downloads/cas/3EGWKGX7 .
3	https://www.hyperledger.org/use/fabric
4	NPTEL: https://onlinecourses.nptel.ac.in/noc19_cs63/preview
4	NPTEL: https://onlinecourses.nptel.ac.in/noc19_cs63/preview

Course Code	Course Name	Credit
CSDC7023	Information Retrieval	03

Prer	Prerequisite: Data structures and algorithms			
Cou	Course Objectives: The course aims students :			
1	To learn the fundamentals of Information Retrieval			
2	To analyze various Information retrieval modeling techniques			
3	To understand query processing and its applications			
4	To explore the various indexing and scoring techniques			
5	To assess the various evaluation methods			
6	To analyze various information retrieval for real world application			
Cou	Course Outcomes: Learner will be able to: -			
1	Define and describe the basic concepts of the Information retrieval system.			
2	Design the various modeling techniques for information retrieval systems.			
3	Understand the query structure and various query operations			
4	Analyzing the indexing and scoring operation in information retrieval systems			
5	Perform the evaluation of information retrieval systems			
6	Analyze various information retrieval for real world application			

Module		Detailed Content	Hours
1		Introduction to Information Retrieval	
	1.1	Introduction to Information Retrieval, Basic Concepts,	
		Information Versus Data, Trends and research issues in	
		information retrieval.	4
	1.2	The retrieval process, Information retrieval in the library, web and	
		digital libraries.	
2		Modeling in Information Retrieval	
	2.1	Taxonomy of Information Retrieval models, Classic Information	
		Retrieval, Alternate set: Theoretical model, Alternative Algebraic	8
		models, Alternative Probabilistic models	8
	2.2	Structured text Retrieval models, Models for browsing	
3		Query and Operations in Information Retrieval	
	3.1	Query structures, Keyboard based querying, Pattern matching,	
		Structured queries	8
	3.2	User relevance feedback, Automatic local analysis, Automatic global	
		analysis	
4		Indexing and Scoring in Information Systems	
	4.1	Introduction, Inverted Files, Other Indices for Text, Boolean queries	1
		and Introduction to Sequential searching	8

	4.2	Scoring, term weighting and the vector space model, Parametric and	1
		zone indexes, Weighted zone scoring, Learning weights, The optimal	İ
		weight, Term frequency and weighting, Inverse document frequency,	İ
		Tf-idf weighting.	İ
		The vector space model for scoring, Queries as vectors, Computing	ı
		vector scores, Efficient scoring and ranking, Inexact top K document	ı
		retrieval	ı
5		Evaluation of Information Retrieval Systems	
	5.1	Information retrieval system evaluation, Standard test collections,	İ
		Evaluation of unranked retrieval sets, Evaluation of ranked retrieval	ı
		results, Assessing and justifying the concept of relevance	6
	5.2	System quality and user utility, System issues, Refining a deployed	İ
		system	İ
6.		Applications of Information Retrieval Systems	
	6.1.	Introduction to Multimedia Information Retrieval	-
	6.2	Introduction to Distributed Information Retrieval	5

Te	extbooks:			
1	Modern information retrieval, Baeza-Yates, R. and Ribeiro-Neto, B., 1999. ACM press.			
2	Introduction to Information Retrieval By Christopher D. Manning and PrabhakarRaghavan,			
	Cambridge University Press			
3	Information Storage & Retrieval By Robert Korfhage – John Wiley & Sons			
Re	References:			
1	Storage Network Management and Retrieval, VaishaliKhairnar			
2	Introduction to Modern Information Retrieval. G.G. Chowdhury. NealSchuman			
3	Natural Language Processing and Information Retrieval by Tanveer Siddiqui, U.S Tiwarey			

	Useful Digital Links		
	1	https://web.stanford.edu/class/cs276/	
ĺ	2	https://www.coursera.org/learn/text-retrieval	

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first-class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

- 1 Question paper will consist of 6 questions, each carrying 20 marks.
- 2 The students need to solve a total of 4 questions.
- 3 Question No.1 will be compulsory and based on the entire syllabus.
- 4 Remaining question (Q.2 to Q.6) will be selected from all the modules.

Course Code	Course Name	Credits
ILO 7011	Product Life Cycle Management	03

- 1. To familiarize the students with the need, benefits and components of PLM
- 2. To acquaint students with Product Data Management & PLM strategies
- 3. To give insights into new product development program and guidelines for designing and developing a product
- 4. To familiarize the students with Virtual Product Development

- 1. Gain knowledge about phases of PLM, PLM strategies and methodology for PLM feasibility study and PDM implementation.
- 2. Illustrate various approaches and techniques for designing and developing products.
- 3. Apply product engineering guidelines / thumb rules in designing products for moulding, machining, sheet metal working etc.
- 4. Acquire knowledge in applying virtual product development tools for components, machining and manufacturing plant

Sr. No.	Detailed Contents	Hrs
	Introduction to Product Lifecycle Management (PLM):Product Lifecycle	10
	Management (PLM), Need for PLM, Product Lifecycle Phases, Opportunities of	
	Globalization, Pre-PLM Environment, PLM Paradigm, Importance & Benefits	
01	of PLM, Widespread Impact of PLM, Focus and Application, A PLM Project,	
VI.	Starting the PLM Initiative, PLM Applications	
	PLM Strategies: Industrial strategies, Strategy elements, its identification, selection and implementation, Developing PLM Vision and PLM Strategy, Change management for PLM	
	Product Design: Product Design and Development Process, Engineering	09
	Design, Organization and Decomposition in Product Design, Typologies of	
	Design Process Models, Reference Model, Product Design in the Context of the	
	Product Development Process, Relation with the Development Process Planning	
	Phase, Relation with the Post design Planning Phase, Methodological Evolution	
02	in Product Design, Concurrent Engineering, Characteristic Features of	
	Concurrent Engineering, Concurrent Engineering and Life Cycle Approach,	
	New Product Development (NPD) and Strategies, Product Configuration and	
	Variant Management, The Design for X System, Objective Properties and	
	Design for X Tools, Choice of Design for X Tools and Their Use in the Design	
	Process	
	Product Data Management (PDM):Product and Product Data, PDM systems	05
03	and importance, Components of PDM, Reason for implementing a PDM system,	
	financial justification of PDM, barriers to PDM implementation	
	Virtual Product Development Tools: For components, machines, and	05
04	manufacturing plants, 3D CAD systems and realistic rendering techniques,	
	Digital mock-up, Model building, Model analysis, Modeling and simulations in Product Design, Examples/Case studies	
	1 Todact Design, Examples, Case studies	

	Integration of Environmental Aspects in Product Design: Sustainable	05
	Development, Design for Environment, Need for Life Cycle Environmental	
05	Strategies, Useful Life Extension Strategies, End-of-Life Strategies, Introduction	
	of Environmental Strategies into the Design Process, Life Cycle Environmental	
	Strategies and Considerations for Product Design	
	Life Cycle Assessment and Life Cycle Cost Analysis: Properties, and	05
	Framework of Life Cycle Assessment, Phases of LCA in ISO Standards, Fields	
06	of Application and Limitations of Life Cycle Assessment, Cost Analysis and the	
	Life Cycle Approach, General Framework for LCCA, Evolution of Models for	
	Product Life Cycle Cost Analysis	

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3.** Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

- 1. John Stark, "Product Lifecycle Management: Paradigm for 21st Century Product Realisation", Springer-Verlag, 2004. ISBN: 1852338105
- 2. Fabio Giudice, Guido La Rosa, Antonino Risitano, "Product Design for the environment-A life cycle approach", Taylor & Francis 2006, ISBN: 0849327229
- 3. Saaksvuori Antti, Immonen Anselmie, "Product Life Cycle Management", Springer, Dreamtech, ISBN: 3540257314
- 4. Michael Grieve, "Product Lifecycle Management: Driving the next generation of lean thinking", Tata McGraw Hill, 2006, ISBN: 0070636265

Course Code	Course Name	Credits
ILO 7012	Reliability Engineering	03

- 1. To familiarize the students with various aspects of probability theory
- 2. To acquaint the students with reliability and its concepts
- 3. To introduce the students to methods of estimating the system reliability of simple and complex systems
- 4. To understand the various aspects of Maintainability, Availability and FMEA procedure

- 1. Understand and apply the concept of Probability to engineering problems
- 2. Apply various reliability concepts to calculate different reliability parameters
- 3. Estimate the system reliability of simple and complex systems
- 4. Carry out a Failure Mode Effect and Criticality Analysis

Sr. No	Detailed Contents	Hrs
01	Probability theory: Probability: Standard definitions and concepts; Conditional Probability, Baye's Theorem. Probability Distributions: Central tendency and Dispersion; Binomial, Normal, Poisson, Weibull, Exponential, relations between them and their significance. Measures of Dispersion: Mean, Median, Mode, Range, Mean Deviation, Standard Deviation, Variance, Skewness and Kurtosis.	08
02	Reliability Concepts: Reliability definitions, Importance of Reliability, Quality Assurance and Reliability, Bath Tub Curve. Failure Data Analysis: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MTBF, Reliability Functions. Reliability Hazard Models: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, Weibull Model. Distribution functions and reliability analysis.	08
03	System Reliability: System Configurations: Series, parallel, mixed configuration, k out of n structure, Complex systems.	05
04	Reliability Improvement: Redundancy Techniques: Element redundancy, Unit redundancy, Standby redundancies. Markov analysis. System Reliability Analysis – Enumeration method, Cut-set method, Success Path method, Decomposition method.	08
05	Maintainability and Availability: System downtime, Design for Maintainability: Maintenance requirements, Design methods: Fault Isolation and self-diagnostics, Parts standardization and Interchangeability, Modularization and Accessibility, Repair Vs Replacement. Availability – qualitative aspects.	05
06	Failure Mode, Effects and Criticality Analysis: Failure mode effects analysis, severity/criticality analysis, FMECA examples. Fault tree construction, basic symbols, development of functional reliability block diagram, Fau1t tree analysis and Event tree Analysis	05

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3.** Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only **Four questions need to be solved**.

- 1. L.S. Srinath, "Reliability Engineering", Affiliated East-Wast Press (P) Ltd., 1985.
- 2. Charles E. Ebeling, "Reliability and Maintainability Engineering", Tata McGraw Hill.
- 3. B.S. Dhillion, C. Singh, "Engineering Reliability", John Wiley & Sons, 1980.
- 4. P.D.T. Conor, "Practical Reliability Engg.", John Wiley & Sons, 1985.
- 5. K.C. Kapur, L.R. Lamberson, "Reliability in Engineering Design", John Wiley & Sons.
- 6. Murray R. Spiegel, "Probability and Statistics", Tata McGraw-Hill Publishing Co. Ltd.

Course Code	Course Name	Credits
ILO 7013	Management Information System	03

- 1. The course is blend of Management and Technical field.
- 2. Discuss the roles played by information technology in today's business and define various technology architectures on which information systems are built
- 3. Define and analyze typical functional information systems and identify how they meet the needs of the firm to deliver efficiency and competitive advantage
- 4. Identify the basic steps in systems development

- 1. Explain how information systems Transform Business
- 2. Identify the impact information systems have on an organization
- 3. Describe IT infrastructure and its components and its current trends
- 4. Understand the principal tools and technologies for accessing information from databases to improve business performance and decision making
- 5. Identify the types of systems used for enterprise-wide knowledge management and how they provide value for businesses

Sr. No.	Detailed Contents	Hrs
01	Introduction To Information Systems (IS): Computer Based Information Systems, Impact of IT on organizations, Importance of IS to Society. Organizational Strategy, Competitive Advantages and IS	4
02	Data and Knowledge Management: Database Approach, Big Data, Data warehouse and Data Marts, Knowledge Management Business intelligence (BI): Managers and Decision Making, BI for Data analysis and Presenting Results	7
03	Ethical issues and Privacy: Information Security. Threat to IS, and Security Controls	7
04	Social Computing (SC): Web 2.0 and 3.0, SC in business-shopping, Marketing, Operational and Analytic CRM, E-business and E-commerce – B2B B2C. Mobile commerce.	7
05	Computer Networks Wired and Wireless technology, Pervasive computing, Cloud computing model.	6
06	Information System within Organization: Transaction Processing Systems, Functional Area Information System, ERP and ERP support of Business Process. Acquiring Information Systems and Applications: Various System development life cycle models.	8

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3.** Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only **Four questions need to be solved**.

- 1. Kelly Rainer, Brad Prince, Management Information Systems, Wiley
- 2. K.C. Laudon and J.P. Laudon, Management Information Systems: Managing the Digital Firm, 10th Ed., Prentice Hall, 2007.
- 3. D. Boddy, A. Boonstra, Managing Information Systems: Strategy and Organization, Prentice Hall, 2008

Course Code	Course Name	Credits
ILO 7014	Design of Experiments	03

- 1. To understand the issues and principles of Design of Experiments (DOE)
- 2. To list the guidelines for designing experiments
- 3. To become familiar with methodologies that can be used in conjunction with experimental designs for robustness and optimization

- 1. Plan data collection, to turn data into information and to make decisions that lead to appropriate action
- 2. Apply the methods taught to real life situations
- 3. Plan, analyze, and interpret the results of experiments

Sr. No	Detailed Contents	Hrs
01	Introduction	
	1.1 Strategy of Experimentation	0.6
	1.2 Typical Applications of Experimental Design	06
	1.3 Guidelines for Designing Experiments	
	1.4 Response Surface Methodology	
	Fitting Regression Models	
	2.1 Linear Regression Models	
	2.2 Estimation of the Parameters in Linear Regression Models	
02	2.3 Hypothesis Testing in Multiple Regression	08
02	2.4 Confidence Intervals in Multiple Regression	
	2.5 Prediction of new response observation	
	2.6 Regression model diagnostics	
	2.7 Testing for lack of fit	
	Two-Level Factorial Designs	
	3.1 The 2 ² Design	
	3.2 The 2 ³ Design	
03	3.3 The General ^{2k} Design	07
	3.4 A Single Replicate of the 2 ^k Design	
	3.5 The Addition of Center Points to the 2 ^k Design,	
	3.6 Blocking in the 2 ^k Factorial Design	
	3.7 Split-Plot Designs	
	Two-Level Fractional Factorial Designs	
	4.1 The One-Half Fraction of the 2 ^k Design	
	4.2 The One-Quarter Fraction of the 2 ^k Design	07
04	4.3 The General 2 ^{k-p} Fractional Factorial Design	07
	4.4 Resolution III Designs	
	4.5 Resolution IV and V Designs	
	4.6 Fractional Factorial Split-Plot Designs	
	Response Surface Methods and Designs	
05	5.1 Introduction to Response Surface Methodology	07
	5.2 The Method of Steepest Ascent	
	5.3 Analysis of a Second-Order Response Surface	

	5.4 Experimental Designs for Fitting Response Surfaces	
06	Taguchi Approach 6.1 Crossed Array Designs and Signal-to-Noise Ratios 6.2 Analysis Methods 6.3 Robust design examples	04

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3.** Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only **Four questions need to be solved**.

- 1. Raymond H. Mayers, Douglas C. Montgomery, Christine M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiment, 3rd edition, John Wiley & Sons, New York, 2001
- 2. D.C. Montgomery, Design and Analysis of Experiments, 5th edition, John Wiley & Sons, New York, 2001
- 3. George E P Box, J Stuart Hunter, William G Hunter, Statics for Experimenters: Design, Innovation and Discovery, 2nd Ed. Wiley
- 4. W J Dimond, Peactical Experiment Designs for Engineers and Scintists, John Wiley and Sons Inc. ISBN: 0-471-39054-2
- 5. Design and Analysis of Experiments (Springer text in Statistics), Springer by A.M. Dean, and D. T.Voss

Course Code	Course Name	Credits
ILO 7015	Operations Research	03

- 1. Formulate a real-world problem as a mathematical programming model.
- 2. Understand the mathematical tools that are needed to solve optimization problems.
- 3. Use mathematical software to solve the proposed models.

- 1. Understand the theoretical workings of the simplex method, the relationship between a linear program and its dual, including strong duality and complementary slackness.
- 2. Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change.
- 3. Solve specialized linear programming problems like the transportation and assignment problems, solve network models like the shortest path, minimum spanning tree, and maximum flow problems.
- 4. Understand the applications of integer programming and a queuing model and compute important performance measures

Sr. No.	Detailed Contents	Hrs
	Introduction to Operations Research: Introduction, , Structure of the	
	Mathematical Model, Limitations of Operations Research	
	Linear Programming: Introduction, Linear Programming Problem,	
	Requirements of LPP, Mathematical Formulation of LPP, Graphical method,	
	Simplex Method Penalty Cost Method or Big M-method, Two Phase Method,	
	Revised simplex method, Duality , Primal – Dual construction, Symmetric and	
	Asymmetric Dual, Weak Duality Theorem, Complimentary Slackness Theorem,	
	Main Duality Theorem, Dual Simplex Method, Sensitivity Analysis	
	Transportation Problem: Formulation, solution, unbalanced Transportation	4.4
01	problem. Finding basic feasible solutions – Northwest corner rule, least cost	14
	method and Vogel's approximation method. Optimality test: the stepping stone	
	method and MODI method.	
	Assignment Problem: Introduction, Mathematical Formulation of the Problem,	
	Hungarian Method Algorithm, Processing of n Jobs Through Two Machines	
	and m Machines, Graphical Method of Two Jobs m Machines Problem Routing	
	Problem, Travelling Salesman Problem	
	Integer Programming Problem: Introduction, Types of Integer Programming	
	Problems, Gomory's cutting plane Algorithm, Branch and Bound Technique.	
	Introduction to Decomposition algorithms.	
0.2	Queuing models: queuing systems and structures, single server and multi-server	05
02	models, Poisson input, exponential service, constant rate service, finite and	05
	infinite population Simulation Introduction Mathedalacu of Simulation Basic Consents	
0.2	Simulation: Introduction, Methodology of Simulation, Basic Concepts,	05
03	Simulation Procedure, Application of Simulation Monte-Carlo Method:	05
	Introduction, Monte-Carlo Simulation, Applications of Simulation, Advantages	

	of Simulation, Limitations of Simulation	
04	Dynamic programming . Characteristics of dynamic programming. Dynamic programming approach for Priority Management employment smoothening, capital budgeting, Stage Coach/Shortest Path, cargo loading and Reliability problems.	05
05	Game Theory . Competitive games, rectangular game, saddle point, minimax (maximin) method of optimal strategies, value of the game. Solution of games with saddle points, dominance principle. Rectangular games without saddle point – mixed strategy for 2 X 2 games.	05
06	Inventory Models : Classical EOQ Models, EOQ Model with Price Breaks, EOQ with Shortage, Probabilistic EOQ Model,	05

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3. Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only **Four questions need to be solved**.

- 1. Taha, H.A. "Operations Research An Introduction", Prentice Hall, (7th Edition), 2002.
- 2. Ravindran, A, Phillips, D. T and Solberg, J. J. "Operations Research: Principles and Practice", John Willey and Sons, 2nd Edition, 2009
- 3. Hiller, F. S. and Liebermann, G. J. "Introduction to Operations Research", Tata McGraw Hill, 2002.
- 4. Operations Research, S. D. Sharma, KedarNath Ram Nath-Meerut
- 5. Operations Research, KantiSwarup, P. K. Gupta and Man Mohan, Sultan Chand & Sons

Course Code	Course Name	Credits
ILO 7016	Cyber Security and Laws	03

- 1. To understand and identify different types cybercrime and cyber law
- 2. To recognized Indian IT Act 2008 and its latest amendments
- 3. To learn various types of security standards compliances

- 1. Understand the concept of cybercrime and its effect on outside world
- 2. Interpret and apply IT law in various legal issues
- 3. Distinguish different aspects of cyber law
- 4. Apply Information Security Standards compliance during software design and development

Sr. No.	Detailed Contents	Hrs
01	Introduction to Cybercrime: Cybercrime definition and origins of the world, Cybercrime and information security, Classifications of cybercrime, Cybercrime and the Indian ITA 2000, A global Perspective on cybercrimes.	4
02	Cyber offenses & Cybercrime: How criminal plan the attacks, Social Engg, Cyber stalking, Cyber café and Cybercrimes, Botnets, Attack vector, Cloud computing, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit Card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security, Attacks on Mobile/Cell Phones, Mobile Devices: Security Implications for Organizations, Organizational Measures for Handling Mobile, Devices-Related Security Issues, Organizational Security Policies and Measures in Mobile Computing Era, Laptops	9
03	Tools and Methods Used in Cyberline Phishing, Password Cracking, Key loggers and Spywares, Virus and Worms, Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Over Flow, Attacks on Wireless Networks, Phishing, Identity Theft (ID Theft)	6
04	The Concept of Cyberspace E-Commerce, The Contract Aspects in Cyber Law, The Security Aspect of Cyber Law, The Intellectual Property Aspect in Cyber Law , The Evidence Aspect in Cyber Law, The Criminal Aspect in Cyber Law, Global Trends in Cyber Law, Legal Framework for Electronic Data Interchange Law Relating to Electronic Banking, The Need for an Indian Cyber Law	8
05	Indian IT Act. Cyber Crime and Criminal Justice: Penalties, Adjudication and Appeals Under the IT Act, 2000, IT Act. 2008 and its Amendments	6
06	Information Security Standard compliances SOX, GLBA, HIPAA, ISO, FISMA, NERC, PCI.	6

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3. Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only **Four questions need to be solved**.

REFERENCES:

- 1. Nina Godbole, Sunit Belapure, Cyber Security, Wiley India, New Delhi
- 2. The Indian Cyber Law by Suresh T. Vishwanathan; Bharat Law House New Delhi
- 3. The Information technology Act, 2000; Bare Act- Professional Book Publishers, New Delhi.
- 4. Cyber Law & Cyber Crimes By Advocate Prashant Mali; Snow White Publications, Mumbai
- 5. Nina Godbole, *Information Systems Security*, Wiley India, New Delhi
- 6. Kennetch J. Knapp, *Cyber Security & Global Information Assurance* Information Science Publishing.
- 7. William Stallings, Cryptography and Network Security, Pearson Publication
- 8. Websites for more information is available on: The Information Technology ACT, 2008-TIFR: https://www.tifrh.res.in
- 9. Website for more information , A Compliance Primer for IT professional : https://www.sans.org/reading-room/whitepapers/compliance/compliance-primer-professionals-33538

Course Code	Course Name	Credits
ILO 7017	Disaster Management and Mitigation Measures	03

Objectives:

- 1. To understand physics and various types of disaster occurring around the world
- 2. To identify extent and damaging capacity of a disaster
- 3. To study and understand the means of losses and methods to overcome /minimize it.
- 4. To understand role of individual and various organization during and after disaster
- 5. To understand application of GIS in the field of disaster management
- 6. To understand the emergency government response structures before, during and after disaster

Outcomes: Learner will be able to...

- 1. Get to know natural as well as manmade disaster and their extent and possible effects on the economy.
- 2. Plan of national importance structures based upon the previous history.
- 3. Get acquainted with government policies, acts and various organizational structure associated with an emergency.
- 4. Get to know the simple do's and don'ts in such extreme events and act accordingly.

Sr. No.	Detailed Contents	Hrs
01	Introduction 1.1 Definition of Disaster, hazard, global and Indian scenario, general perspective, importance of study in human life, Direct and indirect effects of disasters, long term effects of disasters. Introduction to global warming and climate change.	03
02	Natural Disaster and Manmade disasters: 2.1 Natural Disaster: Meaning and nature of natural disaster, Flood, Flash flood, drought, cloud burst, Earthquake, Landslides, Avalanches, Volcanic eruptions, Mudflow, Cyclone, Storm, Storm Surge, climate change, global warming, sea level rise, ozone depletion 2.2 Manmade Disasters: Chemical, Industrial, Nuclear and Fire Hazards. Role of growing population and subsequent industrialization, urbanization and changing lifestyle of human beings in frequent occurrences of manmade disasters.	09
03	Disaster Management, Policy and Administration 3.1 Disaster management: meaning, concept, importance, objective of disaster management policy, disaster risks in India, Paradigm shift in disaster management. 3.2 Policy and administration: Importance and principles of disaster management policies, command and co-ordination of in disaster management, rescue operations-how to start with and how to proceed in due course of time, study of flowchart showing the entire process.	06
04	Institutional Framework for Disaster Management in India: 4.1 Importance of public awareness, Preparation and execution of emergency management program. Scope and responsibilities of National Institute of Disaster Management (NIDM) and National disaster management authority (NDMA) in India. Methods and measures to avoid disasters, Management of casualties, set up of emergency facilities, importance of effective communication amongst different agencies in such situations.	06

	4.2 Use of Internet and softwares for effective disaster management. Applications of GIS, Remote sensing and GPS in this regard.	
05	Financing Relief Measures: 5.1 Ways to raise finance for relief expenditure, role of government agencies and NGO's in this process, Legal aspects related to finance raising as well as overall management of disasters. Various NGO's and the works they have carried out in the past on the occurrence of various disasters, Ways to approach these teams. 5.2 International relief aid agencies and their role in extreme events.	09
06	 Preventive and Mitigation Measures: 6.1 Pre-disaster, during disaster and post-disaster measures in some events in general 6.2 Structural mapping: Risk mapping, assessment and analysis, sea walls and embankments, Bio shield, shelters, early warning and communication 6.3 Non Structural Mitigation: Community based disaster preparedness, risk transfer and risk financing, capacity development and training, awareness and education, contingency plans. 6.4 Do's and don'ts in case of disasters and effective implementation of relief aids. 	06

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3.** Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only **Four questions need to be solved**.

REFERENCES:

- 1. 'Disaster Management' by Harsh K.Gupta, Universities Press Publications.
- 2. 'Disaster Management: An Appraisal of Institutional Mechanisms in India' by O.S.Dagur, published by Centre for land warfare studies, New Delhi, 2011.
- 3. 'Introduction to International Disaster Management' by Damon Copolla, Butterworth Heinemann Elsevier Publications.
- 4. 'Disaster Management Handbook' by Jack Pinkowski, CRC Press Taylor and Francis group.
- 5. 'Disaster management & rehabilitation' by Rajdeep Dasgupta, Mittal Publications, New Delhi
- 6. 'Natural Hazards' and Disaster Management, Vulnerability and Mitigation R B Singh, Rawat Publications
- 7. Concepts and Techniques of GIS –C.P.Lo Albert, K.W. Yonng Prentice Hall (India) Publications.

(Learners are expected to refer reports published at national and International level and updated information available on authentic web sites)

Course Code	Course Name	Credits
ILO 7018	Energy Audit and Management	03

Objectives:

- 1. To understand the importance energy security for sustainable development and the fundamentals of energy conservation.
- 2. To introduce performance evaluation criteria of various electrical and thermal installations to facilitate the energy management
- 3. To relate the data collected during performance evaluation of systems for identification of energy saving opportunities.

Outcomes: Learner will be able to...

- 1. To identify and describe present state of energy security and its importance.
- 2. To identify and describe the basic principles and methodologies adopted in energy audit of an utility.
- 3. To describe the energy performance evaluation of some common electrical installations and identify the energy saving opportunities.
- 4. To describe the energy performance evaluation of some common thermal installations and identify the energy saving opportunities
- 5. To analyze the data collected during performance evaluation and recommend energy saving measures

Sr. No	Detailed Contents	Hrs
01	Energy Scenario: Present Energy Scenario, Energy Pricing, Energy Sector Reforms, Energy Security, Energy Conservation and its Importance, Energy Conservation Act-2001 and its Features. Basics of Energy and its various forms, Material and Energy balance	04
02	Energy Audit Principles: Definition, Energy audit- need, Types of energy audit, Energy management (audit) approach-understanding energy costs, Bench marking, Energy performance, Matching energy use to requirement, Maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution. Elements of monitoring& targeting; Energy audit Instruments; Data and information-analysis. Financial analysis techniques: Simple payback period, NPV, Return on investment (ROI), Internal rate of return (IRR)	08
03	Energy Management and Energy Conservation in Electrical System: Electricity billing, Electrical load management and maximum demand Control; Power factor improvement, Energy efficient equipments and appliances, star ratings. Energy efficiency measures in lighting system, Lighting control: Occupancy sensors, daylight integration, and use of intelligent controllers. Energy conservation opportunities in: water pumps, industrial drives, induction motors, motor retrofitting, soft starters, variable speed drives.	10
04	Energy Management and Energy Conservation in Thermal Systems: Review of different thermal loads; Energy conservation opportunities in: Steam distribution system, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system. General fuel economy measures in Boilers and furnaces, Waste heat recovery,	10

	use of insulation- types and application. HVAC system: Coefficient of performance, Capacity, factors affecting Refrigeration and Air Conditioning system performance and savings opportunities.	
05	Energy Performance Assessment: On site Performance evaluation techniques, Case studies based on: Motors and variable speed drive, pumps, HVAC system calculations; Lighting System: Installed Load Efficacy Ratio (ILER) method, Financial Analysis.	04
06	Energy conservation in Buildings: Energy Conservation Building Codes (ECBC): Green Building, LEED rating, Application of Non-Conventional and Renewable Energy Sources	03

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

REFERENCES:

- 1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell Science
- 2. Designing with light: Lighting Handbook, By Anil Valia, Lighting System
- 3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons
- 4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata Energy Research Institute (TERI).
- 5. Energy Management Principles, C.B.Smith, Pergamon Press
- 6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont Press
- 7. Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus, CRC Press
- 8. www.energymanagertraining.com
- 9. www.bee-india.nic.in

Course Code	Course Name	Credits
ILO7019	Development Engineering	03

Objectives:

- 1. To understand the characteristics of rural Society and the Scope, Nature and Constraints of rural
 - Development.
- 2. To study Implications of 73rd CAA on Planning, Development and Governance of Rural Areas
- 3. An exploration of human values, which go into making a 'good' human being, a 'good' professional, a 'good' society and a 'good life' in the context of work life and the personal life of modern Indian professionals
- 4. To understand the Nature and Type of Human Values relevant to Planning Institutions

Outcomes: Learner will be able to...

- 1. Apply knowledge for Rural Development.
- 2. Apply knowledge for Management Issues.
- 3. Apply knowledge for Initiatives and Strategies
- 4. Develop acumen for higher education and research.
- 5. Master the art of working in group of different nature.
- 6. Develop confidence to take up rural project activities independently

Sr.	Module Contents	Hrs
No.		
01	Introduction to Rural Development Meaning, nature and scope of	08
	development; Nature of rural society in India; Hierarchy of settlements;	
	Social, economic and ecological constraints for rural development Roots	
	of Rural Development in India Rural reconstruction and Sarvodaya	
	programme before independence; Impact of voluntary effort and	
	Sarvodaya Movement on rural development;	
	Constitutional direction directive principles; Panchayati Raj - beginning	
	of planning and community development; National extension services.	
02	Post-Independence rural Development Balwant Rai Mehta Committee -	04
	three tier system of rural local Government; Need and scope for people's	
	participation and Panchayati Raj; Ashok Mehta Committee - linkage	
	between Panchayati Raj, participation and rural development	
03	Rural Development Initiatives in Five Year Plans Five Year Plans and	06
	Rural Development; Planning process at National, State, Regional and	
	District levels; Planning, development, implementing and monitoring	
	organizations and agencies; Urban and rural interface - integrated	
	approach and local plans; Development initiatives and their	
	convergence; Special component plan and sub-plan for the weaker	
	section; Micro-eco zones; Data base for local planning; Need for	
	decentralized planning; Sustainable rural development.	
04	Post 73rd Amendment Scenario 73rd Constitution Amendment Act,	04
	including - XI schedule, devolution of powers, functions and finance;	
	Panchayati Raj institutions - organizational linkages; Recent changes in	
	rural local planning; Gram Sabha - revitalized Panchayati Raj;	
	Institutionalization; resource mapping, resource mobilization including	

	social mobilization; Information Technology and rural planning; Need	
	for further amendments.	
05	Values and Science and Technology Material development and its	10
	values; the challenge of science and technology; Values in planning	
	profession, research and education.	
	Types of Values Psychological values — integrated personality; mental	
	health; Societal values — the modern search for a good society; justice,	
	democracy, rule of law, values in the Indian constitution;	
	Aesthetic values — perception and enjoyment of beauty; Moral and	
	ethical values; nature of moral judgment; Spiritual values; different	
	concepts; secular spirituality; Relative and absolute values;	
	Human values— humanism and human values; human rights; human	
	values as freedom, creativity, love and wisdom.	
06	Ethics Canons of ethics; ethics of virtue; ethics of duty; ethics of	04
	responsibility; Work ethics;	
	Professional ethics; Ethics in planning profession, research and	
	education	

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately

40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved

References:

- 1. ITPI, Village Planning and Rural Development, ITPI, New Delhi
- 2. Thooyavan, K.R. Human Settlements: A 2005 MA Publication, Chennai
- 3. GoI, Constitution (73rd GoI, New Delhi Amendment) Act, GoI, New Delhi
- 4. Planning Commission, Five Year Plans, Planning Commission
- 5. Planning Commission, Manual of Integrated District Planning, 2006, Planning Commission
 - New Delhi
- 6. Planning Guide to Beginners
- 7. Weaver, R.C., The Urban Complex, Doubleday.
- 8. Farmer, W.P. et al, Ethics in Planning, American Planning Association, Washington.
- 9. How, E., Normative Ethics in Planning, Journal of Planning Literature, Vol.5, No.2, pp. 123-150.
- 10. Watson, V. , Conflicting Rationalities: -- Implications for Planning Theory and Ethics, Planning Theory and Practice, Vol. 4, No.4, pp.395 $-\,407$

Lab Code	Lab Name	Credit
CSL70011	Machine Learning Lab	1

Pre	Prerequisite: Data Structures, Analysis of Algorithms		
Lal	b Objectives:		
1	To introduce the basic concepts and techniques of Machine Learning.		
2	To acquire in depth understanding of various supervised and unsupervised algorithms		
3	To be able to apply various ensemble techniques for combining ML models.		
4	To demonstrate dimensionality reduction techniques.		
Lal	Lab Outcomes: At the end of the course, the students will be able to		
1	1 To implement an appropriate machine learning model for the given application.		
2	2 To implement ensemble techniques to combine predictions from different models.		
3	To implement the dimensionality reduction techniques.		

Suggeste	Suggested List of Experiments	
Sr. No.	Title of Experiment	
1	To implement Linear Regression.	
2	To implement Logistic Regression.	
3	To implement Ensemble learning (bagging/boosting)	
4	To implement multivariate Linear Regression.	
5	To implement SVM	
6	To implement PCA/SVD/LDA	
7	To implement Graph Based Clustering	
8	To implement DB Scan	
9	To implement CART	
10	To implement LDA	

Term Work:

- 1 Term work should consist of 6 experiments.
- 2 Journal must include one mini project/case study on any machine learning application.
- 3 The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing marks in term work.
- 4 Total 25 Marks (Experiments & Assignments: 15-marks, Attendance: 05-marks, mini project: 05-marks)

Oral & Practical exam.

Based on the entire syllabus CSC7011 Machine Learning and CSL7011: Machine Learning Lab

Lab Code	Lab Name	Credit
CSL7012	Big Data Analytics Lab	1

Pre	Prerequisite: C Programming Language.		
_	Lab Objectives: Students will be able to		
1	Solve Big Data problems using Map Reduce Technique and apply to various algorithms.		
2	Identify various types of NoSQL databases and execute NOSQL commands		
3	Understand implementation of various analytic techniques using Hive/PIG/R/Tableau, etc.		
4	Apply streaming analytics to real time applications.		
La	b Outcomes:		
1	To interpret business models and scientific computing paradigms, and apply software tools for		
	big data analytics.		
2	To implement algorithms that uses Map Reduce to apply on structured and unstructured data		
3	To perform hands-on NoSql databases such as Cassandra, HadoopHbase, MongoDB, etc.		
4	To implement various data streams algorithms.		
5	To develop and analyze the social network graphs with data visualization techniques.		

	d List of Experiments elect a case study and perform the experiments 1 to 8.).	
Star (*) marked experiments are compulsory.		
Sr. No.	Name of the Experiment	
1*	Hadoop HDFS Practical:	
-	-HDFS Basics, Hadoop Ecosystem Tools Overview.	
	-Installing Hadoop.	
	-Copying File to Hadoop	
	-Copy from Hadoop File system and deleting file.	
	-Moving and displaying files in HDFS.	
	-Programming exercises on Hadoop	
2	Use of Sqoop tool to transfer data between Hadoop and relational database servers.	
	a. Sqoop - Installation.	
	b. To execute basic commands of Hadoop eco system componentSqoop.	
3*	To install and configure MongoDB/ Cassandra/ HBase/ Hypertable to execute NoSQL	
4	commands	
4 ^	Experiment on Hadoop Map-Reduce:	
	-Write a program to implement a word count program using MapReduce.	
5	Experiment on Hadoop Map-Reduce:	
	-Implementing simple algorithms in Map-Reduce: Matrix multiplication, Aggregates,	
6	Joins, Sorting, Searching, etc Create HIVE Database and Descriptive analytics-basic statistics.	
	Data Stream Algorithms (any one):	
,	- Implementing DGIM algorithm using any Programming Language	
	- Implement Bloom Filter using any programming language	
8	Implement Flajolet Martin algorithm using any programming language Social Network Analysis using R (for example: Community Detection Algorithm)	
U	Social Network Analysis using K (for example, Community Detection Algorithm)	
9	Data Visualization using Hive/PIG/R/Tableau/.	
10	Exploratory Data Analysis using Spark/ Pyspark.	

1*	Mini Project: One real life large data application to be implemented (Use standard
	Datasets available on the web).

- Streaming data analysis use flume for data capture, HIVE/PYSpark for analysis of twitter data, chat data, weblog analysis etc.
- Recommendation System (for example: Health Care System, Stock Market Prediction, Movie Recommendation, etc.)

SpatioTemporal DataAnalytics

Usefu	Useful Links:	
1	https://www.coursera.org/learn/hadoop#syllabus	
2	https://www.coursera.org/learn/introduction-mongodb#syllabus	
3	https://www.coursera.org/learn/data-visualization-tableau?specialization=data-visualization#syllabus	
4	https://www.coursera.org/learn/introduction-to-big-data-with-spark-hadoop#syllabus	

Term	Work:
1	Term work should consist of 8 experiments.
2	The final certification and acceptance of term work ensures satisfactory performance of
	laboratory work and minimum passing marks in term work.
3	The final certification and acceptance of term work ensures satisfactory performance of
	laboratory work and minimum passing marks in term work. Total 25 Marks (Experiments:
	15-marks, Attendance Theory & Practical: 05-marks, Assignment: 05-marks)

Oral & Practical exam

Based on the entire syllabus of and CSC702: Big Data Analytics and CSL702 Big Data Analytics Lab

Lab Code	Lab Name	Credit
CSDL7011	Machine Vision Lab	1

Pre	Prerequisite: Computer Graphics, Image Processing, Python		
Lal	Lab Objectives:		
1	To perform basic image processing operations		
2	To explore different preprocessing technique		
3	To develop application related to Machine vision		
4	To detect and recognize objects		
Lal	Lab Outcomes:		
1	Students will be able to read image and video file, perform different processing		
2	Students will be able to do edge detection ,depth estimation		
3	Students will be able to choose appropriate algo for segmentation		
4	Students will be able to implement object detection technique		

Suggest	Suggested Experiments: Students are required to complete at least 8 experiments.	
Sr.No.	Name of the Experiment	
1	Handling Files, Cameras, and GUIs	
	Basic I/O scripts ,Reading/writing an image file ,Converting between an image and raw	
	bytes, Accessing image data with numpy.array, Reading/writing a video file, Capturing	
	camera frames,	
	Displaying images in a window, Displaying camera frames in a window	
2	Processing Images with OpenCV 3	
	Converting between different color spaces,	
	The Fourier Transform, High pass filter, Low pass filter,	
3	Edge detection with Canny,	
	Contour detection,	
	Contours – bounding box, minimum area rectangle, and minimum enclosing circle	
	,Contours – convex contours and the Douglas-Peucker algorithm	
	,Line and circle detection	
4	Depth Estimation	
	Capturing frames from a depth camera	
	Creating a mask from a disparity map	
	Masking a copy operation	
	Depth estimation with a normal camera	
5	Object segmentation using the Watershed and GrabCut algorithms	
	Example of foreground detection with GrabCut	
	Image segmentation with the Watershed algorithm	
6	Detecting and Recognizing Faces	
	Conceptualizing Haar cascades	
	Getting Haar cascade data	
	Using OpenCV to perform face detection	
7	Performing face detection on a still image	
7	Performing face detection on video	
	Performing face recognition Generating the data for face recognition	
	Recognizing faces	
	Preparing the training data	
	Loading the data and recognizing faces	
<u> </u>	Louding the data and recognizing faces	

	Performing an Eigenfaces recognition
8	Retrieving Images and Searching
	Using Image Descriptors,
	Feature detection algorithms,
	Defining features
	Detecting features – corners
	Feature extraction and description using DoG and SIFT
	Anatomy of a keypoint
9	Detecting and Recognizing Objects
	Object detection and recognition techniques
	HOG descriptors
	The scale issue
	The location issue
	Non-maximum (or non-maxima) suppression
	Support vector machines
	People detection
10	Creating and training an object detector
	Bag-of-words
	BOW in computer vision
	Detecting cars in a scene
Rofor	once & Useful Links

Re	Reference &Useful Links:	
1	Learning OpenCV 3 Computer Vision with Python Second Edition, by Joe Minichino Joseph	
	Howse Published by Packt Publishing Ltd.	
2	http://iitk.ac.in/ee/computer-vision-lab	
3	https://nptel.ac.in/courses/108103174	
4	https://docs.opencv.org/3.4/d9/df8/tutorial_root.html	

Te	Term Work:	
1	Term work should consist of 8 experiments.	
2	Journal must include at least 2 assignments.	
3	The final certification and acceptance of term work ensures that satisfactory performance of	
	laboratory work and minimum passing marks in term work.	
4	Total 25 Marks (Experiments: 15-marks, Attendance Theory & Practical: 05-marks,	
	Assignments: 05-marks)	

Lab Code	Lab Name	Credit
CSDL7012	Quantum Computing Lab	1

Prerequisite: Python Programming Language. Lab Objectives: 1 To implement fundamental quantum computing concepts 2 To learn quantum computation and quantum information 3 To understand quantum entanglement, quantum algorithms 4 To understand quantum information theory and channels Lab Outcomes: Students will be able to 1 Implement basic quantum computing logic by building dice and random numbers using open source simulation tools. 2 Understand quantum logic gates using open source simulation tools.

Suggested Experiments: Students are required to complete at least 10 experiments. Faculty may develop their own set of experiments for students. List below is only suggestive.

3 Implement quantum circuits using open source simulation tools.4 I implement quantum algorithms using open source simulation tools.

Sr. No.	Name of the Experiment
1	Building Quantum dice
2	Building Quantum Random No. Generation
3	Composing simple quantum circuits with q-gates and measuring the output into classical bits.
4	Implementation of Shor's Algorithms
5	Implementation of Grover's Algorithm
6	Implementation of Deutsch's Algorithm
7	Implementation of Deutsch-Jozsa's Algorithm
8	Quantum Circuits
9	Qubit Gates
10	Bell Circuit & GHZ Circuit
11	Accuracy of Quantum Phase Estimation
12	Mini Project such as implementing an API for efficient search using Grover's Algorithms or Integer factorization using Shor's Algorithm.

Usef	Useful Links:		
1	IBM Experience: https://quantum-computing.ibm.com/		
2	Microsoft Quantum Development Kit		
	https://azure.microsoft.com/en-us/resources/development-kit/quantum-computing/#overview		
3	Forest SDK PyQuil: https://pyquil-docs.rigetti.com/en/stable/		
4	Google Quantum CIRQ https://quantumai.google/cirq		
5	Qiskit Labs IBM https://learn.qiskit.org/course/ch-labs/lab-1-quantum-circuits		

Term Work:			
1	Term work should consist of 10 experiments.		
2	Journal must include at least 2 assignments.		
3	The final certification and acceptance of term work ensures that satisfactory performance of		
	laboratory work and minimum passing marks in term work.		
4	Total 25 Marks (Experiments: 15-marks, Attendance Theory & Practical: 05-marks,		
	Assignments: 05-marks)		

Lab Code	Lab Name	Credit
CSDL7013	Natural Language processing Lab	1

Prer	Prerequisite: Java/Python		
Lab	Objectives: The course aims		
1	To understand the key concepts of NLP.		
2	To learn various phases of NLP.		
3	To design and implement various language models and POS tagging techniques.		
4	To understand various NLP Algorithms		
5	To learn NLP applications such as Information Extraction, Sentiment Analysis, Question answering, Machine translation etc.		
6	To design and implement applications based on natural language processing		
Lab	Outcomes: Learners will be able		
1	Apply various text processing techniques.		
2	Design language model for word level analysis.		
3	Model linguistic phenomena with formal grammar.		
4	Design, implement and analyze NLP algorithms.		
5	To apply NLP techniques to design real world NLP applications such as machine translation, sentiment analysis, text summarization, information extraction, Question Answering system etc.		
6	Implement proper experimental methodology for training and evaluating empirical NLP systems.		

Suggested	Suggested List of Experiments		
(Select a case study and perform the experiments 1 to 8.).			
	arked experiments are compulsory.		
Sr. No.	Name of the Experiment		
1	Study various applications of NLP and Formulate the Problem Statement for Mini Project based on chosen real world NLP applications:		
	[Machine Translation, Text Categorization, Text summarization, chat Bot, Plagarism, Spelling & Grammar checkers, Sentiment / opinion analysis, Question answering, Personal Assistant, Tutoring Systems, etc.]		
2	Apply various text preprocessing techniques for any given text: Tokenization and Filtration & Script Validation.		
3	Apply various other text preprocessing techniques for any given text : Stop Word Removal, Lemmatization / Stemming.		
4	Perform morphological analysis and word generation for any given text.		
5	Implement N-Gram model for the given text input.		
6	Study the different POS taggers and Perform POS tagging on the given text.		
7	Perform Chunking for the given text input.		
8	Implement Named Entity Recognizer for the given text input.		
9	Implement Text Similarity Recognizer for the chosen text documents.		

Ī	10	Exploratory data analysis of a given text (Word Cloud)
	11	Mini Project Report: For any one chosen real world NLP application.
	13	Implementation and Presentation of Mini Project

Term Work:

1 Study various applications of NLP and Formulate the Problem Statement for Mini Project based on chosen real world NLP applications:

[Machine Translation, Text Categorization, Text summarization, chat Bot, Plagarism, Spelling & Grammar checkers, Sentiment / opinion analysis, Question answering, Personal Assistant, Tutoring Systems, etc.]

- 2 Apply various text preprocessing techniques for any given text: Tokenization and Filtration & Script Validation.
- Apply various other text preprocessing techniques for any given text: Stop Word Removal, Lemmatization / Stemming.

Lab Code	Lab Name	Credit
CSDL7021	Augmented and Virtual Reality Lab	1

Pr	Prerequisite: Computer Graphics, Image Processing, Python		
La	Lab Objectives:		
1	To perform installation of Unity		
2	To explore working of VR Gadget		
3	To develop scene VR application		
4	To track objects in virtual environment		
La	Lab Outcomes: Learners will be able to		
1	Setup VR development environment		
2	Use HTC Vive/ Google Cardboard/ Google Daydream and Samsung gear VR.		
3	Develop VR scene and place object		
4	Work with Augmented Faces features.		

Sugges	Suggested Experiments: Students are required to complete at least 6 experiments.		
Sr.	Name of the Experiment		
No.			
1	Installation of Unity and Visual Studio, setting up Unity for VR development,		
	understanding documentation of the same.		
2	Demonstration of the working of HTC Vive, Google Cardboard, Google Daydream		
	and Samsung gear VR.		
3	Develop a scene in Unity that includes:		
	i. a cube, plane and sphere, apply transformations on the 3 game objects.		
	ii. add a video and audio source		
4	Develop a scene in Unity that includes a cube, plane and sphere. Create a new		
	material and texture separately for three Game objects. Change the colour, material		
	and texture of each Game object separately in the scene. Write a C# program in		
	visual studio to change the colour and material/texture of the game objects		
	dynamically on button click.		
5	Develop a scene in Unity that includes a sphere and plane. Apply Rigid body		
	component, material and Box collider to the game Objects. Write a C# program to		
	grab and throw the sphere using vr controller.		
6	Develop a simple UI(User interface) menu with images, canvas, sprites and button.		
,	Write a C# program to interact with UI menu through VR trigger button such that on		
	each successful trigger interaction display a score on scene .		
7	Place a three-dimensional ARCore pawn on detected AR plane surfaces		
8	Using the Augmented Faces feature in your own apps.		

Ter	Term Work:		
1	Term work should consist of 6 experiments.		
2	Journal must include at least 2 assignments.		
3	The final certification and acceptance of term work ensures that satisfactory		
	performance of laboratory work and minimum passing marks in term work.		
4	Total 25 Marks (Experiments: 15-marks, Attendance Theory & Practical: 05-marks,		
	Assignments: 05-marks)		

Lab Code	Lab Name	Credit
CSDL7022	Blockchain Lab	1

Prer	Prerequisite: Cryptography and Network Security	
Lab	Lab Objectives:	
1	To explore Blockchain concepts.	
2	To implement public and private Blockchain.	
3	To create applications using Blockchain.	
Lab Outcomes: At the end of the course, the students will be able to		
1	Creating Cryptographic hash using merkle tree.	
2	Design Smart Contract using Solidity.	
3	Implementing ethereum blockchain using Geth.	
4	Demonstrate the concept of blockchain in real world application.	

Suggested List of Experiments	
Sr. No.	Title of Experiment
1	Cryptography in Blockchain, Merkle root tree hash
2	Creating Smart Contract using Solidity and Remix IDE.
3	Creating Transactions using Solidity and Remix IDE
4	Embedding wallet and transaction using Solidity
5	Blockchain platform ethereum using Geth.
6	Blockchain platform Ganache.
7	Case Study on Hyperledger
8	Case Study on Other Blockchain platforms.
9	Creating a blockchain Application

Terr	Term Work:	
1	Term work should consist of 8 experiments and one mini project.	
2	Journal must include at least 2 assignments on content of theory and practical of	
	"Blockchain Lab"	
3	The final certification and acceptance of term work ensures satisfactory performance of	
	laboratory work and minimum passing marks in term work.	
4	Total 25 Marks (Experiments: 15-marks, Attendance Theory & Practical: 05-marks,	
	Assignments: 05-marks)	

Lab Code	Lab Name	Credit
CSDL7023	Information Retrieval Lab	1

Pr	Prerequisite: Java, Python	
La	Lab Objectives:	
1	To understand the formation of queries.	
2	To implement the various modeling techniques for IR.	
3	To execute query expansion techniques.	
4	To evaluate Information retrieval systems.	
La	Lab Outcomes: Students will be able :-	
1	To frame queries for information retrieval	
2	To implement modeling techniques	
3	To perform query expansion techniques	
4	To demonstrate evaluation techniques for IR	

Suggested Experiments: Students are required to perform any 5 experiments from the suggested list along with a case study (* indicates compulsory experiment) Sr. **Name of the Experiment** No. To understand the query structure and execute various structured queries 1 2 To implement any IR modeling technique 3 To implement Pattern matching method used for IR 4 To execute query expansion technique (Local/Global) To design inverted indices for any information retrieval model 5 6 To implement tf-id weighting To evaluate the system/application under study 8* To understand the Case Study and generate a report for the same

Te	Term Work:	
1	Term work should consist of 5 experiments and 1 case study	
2	Journal must include at least 2 assignments.	
3	The final certification and acceptance of term work ensures satisfactory performance of	
	laboratory work and minimum passing marks in term work.	
4	Total: 25 Marks (Experiments: 10-marks, Case study - 5 marks Attendance Theory	
	& Practical: 05-marks, Assignments: 05-marks)	

Course Code	Course Name	Credit
CSP701	Major Project 1	03

Course Objectives:

The project work facilitates the students to develop and prove Technical, Professional and Ethical skills and knowledge gained during graduation program by applying them from problem identification, analyzing the problem and designing solutions.

Course Outcomes: Learner will able	
1	To develop the understanding of the problem domain through extensive review of literature.
2	To Identify and analyze the problem in detail to define its scope with problem specific data.
3	To know various techniques to be implemented for the selected problem and related technical skills through feasibility analysis.
4	To design solutions for real-time problems that will positively impact society and environment
5	To develop clarity of presentation based on communication, teamwork and leadership skills.
6	To inculcate professional and ethical behavior.

Guidelines:

1. Project Topic Selection and Allocation:

- Project topic selection Process to be defined and followed:
 - o Project orientation can be given at the end of sixth semester.
 - O Students should be informed about the domain and domain experts whose guidance can be taken before selecting projects.
 - Student's should be recommended to refer papers from reputed conferences/ journals like IEEE, Elsevier, ACM etc. which are not more than 3 years old for review of literature.
 - Students can certainly take ideas from anywhere, but be sure that they should evolve them in the unique way to suit their project requirements. Students can be informed to refer Digital India portal, SIH portal or any other hackathon portal for problem selection.
- Topics can be finalized with respect to following criterion:
 - O **Topic Selection**: The topics selected should be novel in nature (Product based, Application based or Research based) or should work towards removing the lacuna in currently existing systems.
 - o **Technology Used:** Use of latest technology or modern tools can be encouraged.
 - Students should not repeat work done previously (work done in the last three years).

- Project work must be carried out by the group of at least 2 students and maximum 4.
- o The project work can be undertaken in a research institute or organization/Industry/any business establishment. (out-house projects)
- The project proposal presentations can be scheduled according to the domains and should be judged by faculty who are expert in the domain.
- Head of department and senior staff along with project coordinators will take decision regarding final selection of projects.
- o Guide allocation should be done and students have to submit weekly progress report to the internal guide.
- Internal guide has to keep track of the progress of the project and also has to maintain attendance report. This progress report can be used for awarding term work marks.
- o In case of industry/ out-house projects, visit by internal guide will be preferred and external members can be called during the presentation at various levels

2. Project Report Format:

At the end of semester, each group needs to prepare a project report as per the guidelines issued by the University of Mumbai.

A project report should preferably contain at least following details:

- o Abstract
- o Introduction
- o Literature Survey/ Existing system
- Limitation Existing system or research gap
- Problem Statement and Objective \(\)
- Proposed System
 - Analysis/Framework/ Algorithm
 - Design details
 - o Methodology (your approach to solve the problem) Proposed System
- o Experimental Set up
 - o Details of Database or details about input to systems or selected data
 - o Performance Evaluation Parameters (for Validation)
 - Software and Hardware Set up
- o Implementation Plan for Next Semester
 - Timeline Chart for Term1 and Term-II (Project Management tools can be used.)
- References

Desirable

Students can be asked to undergo some Certification course (for the technical skill set that will be useful and applicable for projects.)

3. Term Work:

Distribution of marks for term work shall be done based on following:

- Weekly Log Report
- o Project Work Contribution
- o Project Report (Spiral Bound) (both side print)
- o Term End Presentation (Internal)

The final certification and acceptance of TW ensures the satisfactory performance on the above aspects.

4. Oral and Practical:

Oral and Practical examination (Final Project Evaluation) of Project 1 should be conducted by Internal and External examiners approved by University of Mumbai at the end of the semester.

Suggested quality evaluation parameters are as follows:

- o Quality of problem selected
- o Clarity of problem definition and feasibility of problem solution
- o Relevance to the specialization / industrial trends
- o Originality
- o Clarity of objective and scope
- O Quality of analysis and design
- Quality of written and oral presentation
- o Individual as well as team work